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1. Introduction
For decades, industry has powered China’s rapid economic growth, driving its economic 

restructuring efforts. Since the early 21st century, the conflict between industrial development and 
environmental protection has become increasingly apparent. Heavy reliance on fossil fuels has led 
to high levels of emissions, contributing to climate change and environmental degradation. These 
challenges have made it imperative for China to transform its development model and pursue high-
quality growth under a new development paradigm. In recent years, driven by growing environmental 
policy constraints, China’s development agenda has increasingly centered on a new path to 
industrialization, energy efficiency improvements, and emissions reductions. Against this backdrop, 
the carbon emissions trading market, or “carbon market”, emerged. Pilot ETS programs were launched 
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in Beijing, Shanghai, Tianjin, and Guangdong in 2013, followed by Hubei and Chongqing in 2014, 
and Fujian in 2016. These pilot programs have become key instruments for achieving China’s “carbon 
peaking and neutrality” goals—peaking carbon emissions by 2030 and reaching carbon neutrality by 
2060—and have laid the foundation for a unified national carbon market. In 2017, the 19th National 
Congress of the Communist Party of China (CPC) designated the construction of an ecological 
civilization as a “millennium strategy”, marking a major shift that placed green development at the heart 
of the national development agenda. In 2022, the 20th CPC National Congress reinforced its commitment 
to proactive yet prudent carbon peaking and neutrality, promoting clean, low-carbon energy use and 
advancing low-carbon transitions in industry, construction, and transportation. In this context, examining 
the pilot carbon market’s impact on industrial low-carbon transition offers timely insights into China’s 
evolving growth model and provides empirical support for effective policy implementation.

This paper makes three key contributions. First, it introduces a new theoretical perspective on 
industrial low-carbon transition by focusing on the pilot carbon trading policy. We construct a quasi-
natural experimental setting to evaluate the impact of pilot ETS programs on industrial decarbonization, 
examining how industries can achieve both emission reductions and efficiency gains. We also explore 
regional and sectoral differences in the transition process under the constraints of the carbon market and 
emission reduction targets. Second, we apply a multi-period difference-in-differences (DID) method for 
policy evaluation, contributing to the growing body of literature on the impact of carbon trading schemes 
on industrial transformation. Third, we investigate the mechanisms through which the pilot carbon 
market influences industrial decarbonization, focusing on cost constraints, structural upgrading, and 
technological progress. The findings provide actionable policy recommendations to support industrial 
low-carbon transition and advance China’s carbon peaking and neutrality goals.

2. Literature Review
Since the launch of China’s pilot carbon emissions trading schemes (ETS), scholars have extensively 

examined their impacts, which can be broadly categorized into two strands: environmental effects and 
economic effects.

The first strand focuses on environmental outcomes, particularly whether pilot ETS reduce 
carbon emissions and emission intensity. Most studies find that the ETS has had a significant emission 
reduction effect and strong mitigation potential. For example, Zhang et al. (2017) reported that total 
carbon emissions from 635 industrial enterprises in Shenzhen declined by 11% from 2010 to 2015, 
indicating the emerging effectiveness of market mechanisms in promoting decarbonization. Li & Zhang 
(2017) identified key influencing factors—such as energy intensity, emission coefficients, and energy 
consumption structure—and used a stochastic frontier analysis (SFA) model to examine how the ETS 
improves energy and technical efficiency and allocative efficiency. Li (2021) demonstrated the existence 
of spatial emission reduction effects resulting from the pilot policy. Wu et al. (2021) constructed a 
theoretical model of synergy between market mechanisms and administrative interventions, analyzing 
both the theoretical logic and empirical evidence of their combined impact on emission reduction. Wang 
et al. (2022) reached similar conclusions. Cheng & Yang (2023), using panel data from 30 provinces, 
also confirmed the carbon mitigation effects of pilot ETS and further examined mediating channels such 
as green technological innovation and energy structure transformation.

The second strand of research explores economic effects, with a particular emphasis on total factor 
productivity (TFP). Many studies suggest that the pilot ETS has a positive impact on green or low-
carbon TFP, thereby contributing to sustainable economic growth (Dong & Wang, 2021; Sun et al., 2022; 
Jia et al., 2022; Hu et al., 2023). This has important implications for promoting high-quality and green 
development (Jing, 2022; Zheng & Yao, 2023). Other research has examined the effects of the pilot 
ETS on industrial structure, energy efficiency, technological innovation, and corporate value. Regarding 
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industrial structure, Tan & Zhang (2018), Liu & Cheng (2022), among others, argue that the carbon 
market reshapes firms’ cost-benefit dynamics. To offset the cost pressures of environmental compliance, 
firms adjust factor allocation, product mix, and technology strategies, thereby driving structural 
upgrading at the macro level. In terms of energy efficiency, ETS facilitate more efficient allocation of 
resources and production factors, allowing cleaner and more efficient firms to thrive, thus encouraging 
green technological progress and improvements in overall energy use efficiency (Zhu & Sun, 2022). 

In the area of technological innovation, existing research has shown that carbon trading policies 
can transmit expectations to firms through a “signal-anticipation” mechanism even before their official 
implementation, thereby encouraging firms to engage in low-carbon technological innovation (Wang et 
al., 2020). These innovations include technologies that achieve lower carbon emissions, zero-emission 
non-negative carbon technologies, and negative-carbon technologies that offset necessary emissions 
during production processes (Cao & Su, 2023), all of which help enterprises reduce expenditures on 
purchasing carbon quota or generate income by selling surplus quota. In terms of corporate value, carbon 
credit is regarded as a form of property right—an asset with both tangible and option value. Firms 
with lower carbon intensity often possess surplus allowances and face lower marginal abatement costs, 
enabling them to profit and realize value appreciation (Shen & Huang, 2019). Furthermore, research 
has found that carbon trading policies significantly enhance overall economic welfare (Zhang & Wang, 
2022).

Despite these insights, important questions remain underexplored:
(1) Can pilot ETS effectively promote the low-carbon transition of the industrial sector? 
(2) Are there differences in policy effects between pilot and non-pilot regions? 
(3) How do the impacts vary across regions and industrial sectors? 
(4) How can the ETS be further optimized to support industrial transformation?
Addressing these questions holds both theoretical and practical significance for understanding 

China’s industrial development, evaluating ETS policy effectiveness, and informing strategies to achieve 
the “carbon peaking and neutrality” goals. This paper investigates the relationship between pilot ETS 
policies and industrial low-carbon transition, aiming to provide empirical evidence for improving carbon 
governance and supporting industrial modernization.

3. Theoretical Analysis and Hypotheses
Drawing upon the research frameworks of Deng & Yang (2019) and Wen & Liu (2022), this paper 

constructs a theoretical model incorporating carbon pricing, technological progress, and industrial 
structural adjustment. The model is designed to analyze the mechanisms through which the pilot carbon 
market influences the industrial low-carbon transition. Assume a region with two production sectors: 
X and Y. Sector X produces product x and generates carbon emissions z during its production process. 
Sector Y produces a clean product y, whose production involves no carbon emissions. Let the price of 
product x be p, and the price of product y be normalized to 1. Both sectors employ capital (K) and labor 
(L), with their respective factor prices denoted by r (capital) and w (labor). The production functions 
for both products are specified in the Cobb-Douglas (C-D) form, as follows for product x and product y, 
respectively:

                            F(Kx, Lx)=Kx
β Lx

1-β                             (1)

                            F(Ky, Ly)=Ky
δ Ly

1-δ                            (2)
In the absence of environmental regulations, the output of product x is directly proportional to 

carbon emissions z. However, under environmental regulatory pressure, firms must allocate a portion 
of their production factors, denoted by θ, to carbon emission control efforts (θ [0,1]). As a result, the 
production functions for product x and carbon emissions z are, respectively, as follows:
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                      x=F((1−θ )Kx, (1−θ )Lx)=(1−θ )Kx
β Lx

1-β                   (3)

                      z=φ(θ)F(Kx, Lx)=φ(θ)Kx
β Lx

1-β                          (4)
Where φ(θ) is a decreasing function of θ, reflecting the level of carbon emission governance. Let 

φ(θ)=A−1(1−θ )1/α, where A denotes the level of production technology, with α (0,1). At this point, the 
new expression for product x can be derived as:

                              x=(Az)αF1-α                                (5)
Without considering environmental regulations, firms in sector X, like those in sector Y, aim to 

minimize costs according to equations (1) and (2), i.e.,
                    cx

F(w, r)=min{rKx +wLx, F(Kx, Lx)=1}                         (6)

                    cy
F(w, r)=min{rKy +wLy, F(Ky, Ly)=1}                         (7)

Let M=(1−β) β−1/β β and N=(1−δ) δ−1/δ δ. Then, the average production costs of the two products are, 
respectively:

                              Cx=Mr βw1−β                               (8)

                              Cy=Nr δw1−δ                               (9)
Assume that all carbon emissions z from sector X are traded in the carbon market, with the carbon 

price pt determined by market supply and demand. The cost minimization problem for firms in sector X 
then becomes:

                  cx(cF, pt )=min{ pt Az +cFF, (Az)αF1−α=1}                  (10)

The solution is: pt /c
F=αF/ (1−α )Az                                         (11)

Assume a perfectly competitive market in which firms satisfy the zero-profit condition, i.e.,
                             px=cFF+pt Az                              (12)

Substituting equation (11) and simplifying yields: z=αpx/Apt                                     (13)

Furthermore, carbon emission intensity can be expressed as: z px1 α= * *px+y px+ypt A           (14)

As shown in equation (14), under the constraints of the pilot carbon market, carbon emission 
intensity is jointly determined by three key factors: the carbon price, technological progress, and 
adjustments in industrial structure.

In a competitive market, the price of each commodity equals its production cost. From equations 
(3)-(4), (8)-(9), and (12), we obtain Mr βw1−β=P=p(1−θ )−pt (1−θ )1−α , Nr δw1−δ=1. Then, the factor prices 
can be derived as:

                       1 1M Mw= r=,N NP P
β−δ

β
δ−β
1−β

δ−β
1−δ

β−δ
δ

                        (15)

According to Shepherd’s Lemma, the input demands per unit of products x and y can be determined, 
and the total factor input is given by:

                L=Lxx+Lyy =M(1−β) r βw−βx+N(1−δ) r δw −δy                    (16)

                  K=Kxx+Kyy =Mβr β−1w1−βx+Nδr δ−1w1−δy                         (17)
The equilibrium outputs of sectors X and Y are then:

                    x= y=,
wδL
r1−δ −K wβL

r1−β −K

w
r

1−β

1−δ Mδ−β w
r

1−δ

1−β Nβ−δ
                      (18)
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From equation (15), we have =SP1/(δ−β)w
r , and parameter M

NS=      
1/( β−δ)

. Taking the derivative of 
equation (18) with respect to the carbon price pₜ allows us to observe the impact of the pilot carbon 
market on the equilibrium outputs of the two products:

            ∂x ∂x ∂P ∂P
∂pt ∂P ∂pt ∂pt(β−δ)2M

= = <0δβSβP      L+(1−δ)(1−β)Sβ−1Pδ−β
β

−1 δ−β
β−1

−1

            (19)

            ∂y ∂y ∂P ∂P
∂pt ∂P ∂pt ∂pt(β−δ)2N

= = >0δβSδP    L+(1−δ)(1−β)Sδ−1P    Kδ−β
β

δ−β
β−1

              (20)

Furthermore, this paper measures production efficiency by the ratio of the total output of the two 
sectors to the total factor input:

                           ∑λi yi λ1x+λ2y
∑μjIj μ1L+μ2KPE= =                             (21)

Let λi and μj denote the proportions of the ith output and the jth input, respectively. Then, the impact 
of the pilot carbon market on production efficiency is:

                         ∂x ∂y∂PE 1
∂pt ∂pt∂pt f= λ1 +λ2                           (22)

From equation (22), combined with (19) and (20), it is evident that the market mechanism can 
influence industrial structure adjustment by reducing the production of carbon-intensive products and 
increasing the output of cleaner products, thereby affecting regional production efficiency. Given a 
region’s fixed factor endowments f, improvements in technological progress can also influence economic 
output via market mechanisms ∂P/∂pt=−(1−θ ) =−Aφ(θ), thereby enhancing production efficiency. 
Therefore, the pilot carbon market can influence both industrial structure and technological progress by 
imposing cost constraints through its price mechanism, which in turn affects production efficiency. Based 
on this, the paper argues that the pilot carbon market promotes low-carbon transition by imposing cost 
constraints, encouraging structural upgrading, and incentivizing technological innovation in industrial 
sectors. The specific mechanism is illustrated in Figure 1.

Figure 1: How Pilot Carbon Markets Drive Low-Carbon Industrial Transformation

Pilot carbon 
market

Industrial 
low-carbon 

transformation

Technological 
progress

Excessive emissions 
increase production costs

Seeks clean alternative factors

Higher costs constrain productivity

Technological progress brings changes in 
the proportion of factor inputs (indirectly 
affecting technological progress)

Industrial 
restructuring

Reduces the proportion of high energy-
consuming industries

Improves total factor productivity

Reduces production of polluting products 
and increases production of clean products 
(indirectly affecting industrial restructuring)

Minimizes cost-driven factors and invest in low-carbon technologies

Price 
mechanism



51China Economist Vol.20, No.5, September-October 2025

Based on the theoretical model above, and drawing from equations (14) and (22), the following 
hypothesis is proposed:

Hypothesis 1: The pilot carbon market is conducive to promoting the process of industrial low-
carbon transition.

Existing research indicates that cost constraints serve as an intrinsic incentive for firms to pursue 
transformation and innovation (Zhao & Li, 2023). Since carbon pricing affects the production costs 
of industrial goods, firms are compelled either to adopt cleaner alternative inputs to reduce costs or to 
leverage technological advancements to adjust input combinations, thereby maintaining or enhancing 
productivity to stay competitive and profitable. The higher the cost of carbon emissions, the greater the 
pressure on high-emission firms to adopt low-carbon strategies, which in turn increases demand for low-
carbon technologies and promotes industrial decarbonization. The carbon trading mechanism plays a 
direct role in shaping the carbon market’s pricing system (Shen & Huang, 2019) and offers firms greater 
incentives to innovate and transition toward low-carbon operations (Tan & Zhang, 2018). Upgrading 
industrial structures is a crucial aspect of green industrial transformation (Peng, 2016). Structural 
improvements support the development of the clean energy sector, foster an enabling environment for 
innovative, adaptive, and resilient enterprises, and stimulate both upstream and downstream industries to 
produce or adopt cleaner products. This facilitates the formation of low-carbon industrial supply chains 
and promotes comprehensive industrial upgrading and decarbonization.

Moreover, the positive impact of technological progress on output growth has been widely 
recognized in the literature (Bai et al., 2016, 2017). In particular, the development of low-carbon 
technologies provides essential support for cleaner production processes, equipment upgrades, and 
the R&D of new products, all of which contribute to pollution reduction and low-carbon industrial 
transformation (Li et al., 2013). Technological advancements in one sector can not only aid internal 
emission reductions or productivity gains but also generate spatial spillover effects (Jia et al., 2023). 
Through pilot carbon markets, such innovations can diffuse across the broader industrial landscape for 
shared learning. Additionally, competition among peers motivates firms to increase R&D investment in 
pursuit of higher innovation output, enabling them to attain technological leadership and sustain their 
competitive advantage.

Based on this theoretical foundation, we propose the following hypothesis:
Hypothesis 2: The pilot carbon market promotes low-carbon transformation through three channels: 

(1) tightening cost constraints, (2) accelerating industrial restructuring, and (3) spurring technological 
innovation.

4. Empirical Research Design
4.1 Identification Strategy

Given the staggered implementation of the pilot carbon market across different provinces, this study 
adopts a multi-period DID approach to accurately identify the policy’s effects over time. This method 
allows for the assessment of both emission reduction and economic efficiency impacts of the carbon 
market as an environmental regulatory instrument. Specifically, it evaluates the effectiveness of China’s 
industrial low-carbon transition under the carbon trading mechanism, from the dual perspectives of 
emission control and productivity enhancement. The multi-period DID model is specified as follows:

                    Yit =β0+β1DIDit +β2Controlit +μi +γt +εit                    (23)

In this equation, i denotes the province and t denotes the year. The dependent variable Y includes 
carbon emission intensity and low-carbon total factor productivity. The core explanatory variable DID is 
defined as DIDit=treati×postt, where treati indicates whether a region is part of the carbon market pilot, 
and postt reflects whether the pilot program has been implemented in that year. Control represents a set 
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of control variables that account for local characteristics potentially affecting the industrial low-carbon 
transition. μi and γt denote province and year fixed effects, respectively, while εit is the random error term.

4.2 Variable Description

4.2.1 Dependent variable
The dependent variable in this study is industrial low-carbon transition, which reflects not only 

reductions in carbon emissions but also fundamental changes in the mode of industrial development. 
Drawing on the definition proposed by Zhou et al. (2022), industrial low-carbon transition refers to 
the transformation of China’s industrial development model through energy conservation, emission 
reduction, structural upgrading, and technological advancement, aiming to achieve the dual objectives 
of output growth and emission reduction. This study adopts this definition and measurement approach 
to assess industrial low-carbon transition through two indicators: carbon emission intensity and low-
carbon total factor productivity. It measures emission reduction using the logarithm of provincial 
industrial carbon emission intensity (lnco2ei) as the dependent variable, with data sourced from the 
China Emission Accounts and Datasets (CEADs). For productivity gains, it uses low-carbon total factor 
productivity (TFP) as the dependent variable, calculated via the super-efficiency slack-based measure 
(SBM) model.

Following the approach of Li et al. (2013) and Zhou et al. (2022), this study employs a super-
efficiency SBM model incorporating undesirable outputs to reflect environmental impacts within the 
total factor productivity framework. This model includes input variables, desirable outputs, and 
undesirable outputs. Input variables consist of capital, labor, and energy. Specifically, capital 
is measured by the annual average balance of net fixed assets of industrial enterprises, labor is 
measured by the annual average number of industrial employees, and energy input is measured 
by total industrial energy consumption. These data are sourced from the China Industrial Economy 
Statistical Yearbook. For missing data in 2017 and 2018, linear interpolation is used to fill in the gaps. 
Industrial added value serves as the desirable output, while carbon dioxide emissions are treated as the 
undesirable output.

4.2.2 Core explanatory variable
The core explanatory variable is the DID term, defined as treati×postt. This variable identifies 

treatment and control groups based on whether the region is subject to the pilot carbon market policy. 
The treatment group includes seven pilot provinces and cities: Beijing, Shanghai, Tianjin, Guangdong, 
Hubei, Chongqing, and Fujian. All other non-pilot regions serve as the control group. The treati×postt 
variable equals 1 (treati×postt = 1) if province i is Beijing, Shanghai, Tianjin, or Guangdong and year t is 
2013 or later; or if province i is Hubei or Chongqing and year t is 2014 or later; or if province i is Fujian 
and year t is 2016 or later. In all other cases, treati×postt is set to 0 (treati×postt = 0).

4.2.3 Control variables and other variables
In addition to the core explanatory variable—the pilot carbon market policy—this study includes 

a range of control variables that may influence the regional industrial low-carbon transition, based 
on established literature. The level of regional economic development (PGDP) is measured by the 
logarithm of per capita regional GDP, adjusted to 2006 constant prices using the GDP deflator. Economic 
agglomeration (lnpop) is proxied by the logarithm of population density, while regional research and 
development capacity (lntmt) is captured by the logarithm of the technology market transaction volume. 
Openness to foreign investment (FDI) is measured as the share of total foreign investment in regional 
GDP. Government expenditure (GOV) is represented by the ratio of general public budget expenditure 
to regional GDP. The industrial structure (INS) is defined as the proportion of industrial added value 
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1  Following Deng (2019), who identifies six major energy-intensive sectors: chemical raw materials and chemical products manufacturing, 
non-metallic mineral products, ferrous metal smelting and rolling, non-ferrous metal smelting and rolling, petroleum processing and coking, and 
electric and thermal power production and supply.

in regional GDP. The number of industrial enterprises (lnNfirm) is measured by the logarithm of the 
number of above-scale industrial enterprises in each province. Energy prices (EP) are measured using 
the fuel price index extracted from each region’s commodity retail price index.

In the mechanism analysis, the study further incorporates specific variables to measure relevant 
channels. The carbon price (lnprice) is represented by the logarithm of the annual average of daily 
closing prices. Industrial structure upgrading (highper) is measured by the proportion of output from 
high-energy-consuming industries1. This variable serves as a negative indicator, where a higher value 
implies lower structural upgrading. Technological progress (lnpatent) is measured by the logarithm of 
the number of invention patents granted to above-scale industrial enterprises.

4.3 Data Sources and Descriptions

4.3.1 Data sources
This study is based on panel data covering 30 provinces in China from 2006 to 2021, excluding the 

Xizang Autonomous Region. Except for carbon dioxide emissions and energy consumption, all regional-
level data are obtained from the China Statistical Yearbook (2007-2022) and the China Environmental 
Statistical Yearbook. For the missing 2018 data on provincial industrial added value, the national ratio 
of industrial added value to secondary industry added value is used as a uniform coefficient to estimate 
the provincial values. For the heterogeneity analysis, industry-level data on carbon emissions and energy 
consumption are sourced from the China Emission Accounts & Datasets (CEADs), based on the CEADs 
industry classification. The study retains only industrial sectors and consolidates them into 36 aggregated 
categories. Because energy consumption comprises multiple sources—including coal, petroleum, natural 
gas, electricity, heat, and others—with different measurement units that cannot be directly aggregated, 
all energy types are converted into standard coal equivalent (10,000 tons) using the reference coefficients 
provided in the China Energy Statistical Yearbook. This conversion ensures the comparability and 
consistency of energy consumption data across sectors and provinces.

Figure 2: Annual Averages of Carbon Emission Intensity and Low-Carbon Total Factor Productivity for Treatment and 
Control Groups
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4.3.2 Descriptive characteristics of key variables
Figure 2 depicts the annual mean trends in carbon emission intensity and low-carbon total factor 

productivity for the treatment and control groups. The treatment group consistently shows lower carbon 
emission intensity and higher output growth than the control group. Both groups shared similar trends 
before the pilot carbon market policy, confirming the parallel trend assumption. Post-policy, the treatment 
group exhibits a stronger policy effect, highlighting the pilot carbon market’s role as an effective quasi-
natural experiment for studying industrial low-carbon transition across Chinese provinces. These data 
patterns provide a robust foundation for applying the DID approach.

5. Analysis of the Pilot Carbon Market’s Role in Promoting Industrial Low-
Carbon Transition
5.1 Baseline Regression

This study argues that the pilot carbon market affects industrial low-carbon transition through two 
main channels: reducing emissions and enhancing efficiency. Accordingly, the DID method is employed 
to estimate the treatment effects of the carbon market on industrial carbon emission intensity and low-
carbon total factor productivity. Table 1 presents the baseline regression results derived from estimating 
equation (1) using provincial panel data. In columns (1) and (3), regressions are performed without the 
inclusion of control variables, while all regressions incorporate both year and province fixed effects. 
Standard errors are clustered at the provincial level to account for within-region correlation. In terms of 
emission reduction, the coefficient of the core explanatory variable DID in column (1) is significantly 
negative at the 1% level, indicating that the pilot carbon market effectively suppresses industrial 
carbon emission intensity. To mitigate concerns over omitted variable bias, column (2) introduces 
control variables related to regional characteristics. Although the magnitude of the coefficient slightly 
decreases, it remains statistically significant at the 1% level. Regarding efficiency enhancement, the 
DID coefficients in columns (3) and (4) are both significantly positive at the 1% level, suggesting that 
the implementation of the carbon market pilot has spurred industrial output growth and improved low-
carbon total factor productivity. Quantitatively, the results imply that the pilot carbon market reduces 
carbon emission intensity by an average of approximately 25.3% and increases low-carbon total factor 
productivity by about 9.7%. These findings provide preliminary empirical support for the view that the 
pilot carbon market contributes to industrial low-carbon transition, thereby validating Hypothesis 1.

Table 1: Baseline Regression Analysis

Variable
(1) (2) (3) (4)

lnco2ei lnco2ei tfp tfp

DID
-0.317*** -0.253*** 0.176*** 0.097***

(0.111) (0.074) (0.045) (0.031)

_cons
1.783*** -0.827 0.540*** 1.090

(0.046) (3.295) (0.036) (1.316)

Control variables NO YES NO YES

Year fixed effects YES YES YES YES

Province fixed effects YES YES YES YES

N 480 480 480 480

adj. R2 0.492 0.802 0.465 0.727

Note: Robust standard errors clustered at the provincial level are reported in parentheses. * p < 0.1, ** p < 0.05, *** 
p < 0.01. The same notation applies to all subsequent tables.
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5.2 Dynamic Effect Test
This study adopts the methodological framework of Beck et al. (2010) and Wu et al. (2021) to 

assess the dynamic treatment effects of the pilot carbon market policy and to further validate the parallel 
trends assumption underlying the DID approach. We examine a 13-year period centered on the policy 
implementation year, covering six years before and six years after the official launch of the carbon 
market pilot. The year that is seven years prior to implementation is excluded from the main analysis2 
and instead serves as the baseline year for comparison3. Following the event study approach, we 
construct a specific model based on this baseline, as detailed below.

              Yit =α0+β1D
−6
it  +β2D

−5
it  +∙∙∙+β13D

6
it +α1Controlit +μi +γt +εit              (24)

The interaction term D j
it represents the product of the pilot year dummy variable and the 

corresponding policy dummy variable. Its value is defined as follows: it equals 1 if province i is in the 
jth year before or after the implementation of its carbon market pilot policy in year t; otherwise, it equals 
0. All other variables retain the same meanings as in the baseline model. The coefficient β measures the 
difference in industrial low-carbon transition between provinces that implemented the carbon market 
pilot policy and those that did not. If β is statistically insignificant for j<0, it suggests no significant pre-
treatment difference in industrial low-carbon transition between pilot and non-pilot provinces, thereby 
supporting the parallel trend assumption. For j≥0, the coefficient β captures the annual treatment effect of 
the pilot policy; if β is statistically significant, it indicates that the implementation of the carbon market 
pilot had a substantive impact on industrial low-carbon transition in that year.

It is important to note that an unbiased estimation of the policy’s treatment effect depends on both 
the parallel trend assumption and the absence of spillover effects—that is, the treatment should not affect 
the control group. In this study, non-pilot provinces are used as the control group for evaluating the 
impact of carbon market pilots. If any provinces in the control group are influenced by spillover effects 
from the policy, it could distort the estimation of the true treatment effect. A more detailed discussion of 
spillover effects is provided later in the text.

2  This paper takes 2013, the official launch year of the carbon market pilot, as the policy shock time point. However, due to the different 
implementation times of the carbon market pilot policies, a small number of samples have time points of -8, -9, and -10 relative to the policy 
shock, so these small number of samples are merged into the -7 time point. 

3  Regarding the setting of the base period, most existing literatures use the initial year of sample observation, the year of policy 
implementation, or the year before policy implementation as the comparison benchmark.

Figure 3: Dynamic Effects of the Pilot Carbon Market
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Figure 3 illustrates the dynamic effects of the pilot carbon market on industrial low-carbon 
transition. The dynamic effect regression results in Figure 3 (left) show that coefficient β is close to zero 
and insignificant for the interval -6≤ j≤-2. This indicates no significant difference in carbon emission 
intensity between the treatment and control groups before the pilot carbon market policy, thus satisfying 
the parallel trend assumption. The pilot carbon market’s treatment effect on emission reduction begins 
to emerge when β is at j = -1, with the carbon reduction effect reaching its peak in the fourth year after 
implementation. In fact, related studies (Hu et al., 2019; Wu et al., 2021) have also found that pilot 
carbon market regions exhibit an “anticipatory policy effect”. This means that after China proposed 
and began preparations for carbon market construction by the end of 2011, closely related high-carbon 
emission sectors proactively reduced their carbon emissions.

As shown in Figure 3 (right), coefficient β is almost close to zero and not significantly different 
from zero when j≤0 , indicating no significant difference in low-carbon total factor productivity between 
the treatment and control groups before the pilot carbon market policy. This again satisfies the parallel 
trend assumption. The effect becomes significant when β is at j = 3, suggesting that the pilot carbon 
market’s treatment effect begins to show an efficiency-enhancing trend. Specifically, low-carbon total 
factor productivity in pilot regions steadily improves in the third year after policy implementation, 
significantly increases further in the fourth year, and maintains a high productivity level thereafter. 
This result confirms a lagged effect of the pilot carbon market on productivity enhancement. It implies 
that in the short term, industrial sectors may achieve emission reduction targets at the cost of output 
growth. However, in the long run, under the dual pressures of economic growth and emission reduction, 
industries achieve a new growth model of high output and low emissions through technological 
improvement, industrial restructuring, and other channels.

5.3 Placebo Test and Time Heterogeneity

5.3.1 Placebo test
Following Bai et al. (2022), this study conducted a placebo test by randomly assigning policy 

implementation years and treatment groups. Industrial low-carbon transition may be influenced by 
concurrent policies or unobserved factors, potentially biasing estimated effects. To address this, 
pseudo-carbon market pilot policies were constructed. If placebo coefficients remained significant, it 
would suggest that differences between treatment and control groups stem from confounding factors. 
If insignificant, it would confirm that observed effects are primarily due to the carbon market pilot, 
supporting result robustness. The method involved 500 random simulations across 30 provinces, with 
7 provinces randomly selected as the treatment group and implementation years randomly assigned in 
each simulation, generating 500 sets of placebo dummy variables (didrandom). For emission reduction, 
placebo coefficients clustered around zero, with most p-values exceeding 0.1, while the actual policy 
coefficient was -0.253 and significant. For productivity enhancement, placebo coefficients were mostly 
negative, with p-values above 0.1, compared to the actual policy coefficient of 0.097, which was 
significant. These differences indicate that policy effects are unlikely driven by unobserved confounders, 
confirming the robustness of baseline results.

5.3.2 Time heterogeneity
The staggered implementation of the carbon market pilot may introduce time-varying heterogeneity, 

leading to inconsistent policy effects and biased estimations. According to Goodman-Bacon (2021), 
the two-way fixed effects (TWFE) estimator is a weighted average of all possible two-by-two DID 
comparisons. If regions that adopted the policy earlier are mistakenly used as controls for those treated 
later, the estimated treatment effect may become exaggerated or even reversed as the sample period 
extends (Baker et al., 2022). To address this issue, we follow the decomposition approach proposed by 
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Goodman-Bacon (2021) to break down the overall DID coefficient from the TWFE model. This allows 
us to identify the contributions of different group comparisons and isolate the “pure” treatment effect of 
the carbon market pilot on China’s industrial low-carbon transition.

Table 2 presents the Goodman-Bacon decomposition results, comprising: (1) DID estimates 
comparing earlier-treated regions to later-treated regions (Earlier treated vs. Later control), (2) DID 
estimates comparing later-treated regions to earlier-treated regions (Later treated vs. Earlier control), 
and (3) DID estimates comparing all treated regions to never-treated regions (Treated vs. Never 
treated), which represent the primary effect of interest. The potentially biased DID component—
comparing later-treated regions to earlier-treated regions (Later treated vs. Earlier control)—carries a 
low weight of approximately 3.2%, resulting in minimal bias in the overall treatment effect. Conversely, 
the primary comparison—treated versus never-treated regions—accounts for about 96.8% of the 
weight, demonstrating that valid comparisons predominantly drive the findings. These results confirm 
that estimation bias from treatment timing heterogeneity remains negligible, strongly supporting the 
credibility and robustness of the study’s conclusions.

Table 2: Weights and Coefficients from Goodman-Bacon (2021) Decomposition

Component
Panel A: lnco2ei

Weight Coefficient
Earlier treated vs. Later control 0.016 0.042
Later treated vs. Earlier control 0.015 -0.065
Treated vs. Never treated 0.968 -0.327
DID -0.317

Component
Panel B: tfp

Weight Coefficient
Earlier treated vs. Later control 0.016 -0.003
Later treated vs. Earlier control 0.015 0.025
Treated vs. Never treated 0.968 0.182
DID 0.176
Note: The Goodman-Bacon (2021) decomposition illustrates the weights and components that constitute the 
DID coefficient, where “Treated” refers to provinces implementing the carbon market pilot. Panel A presents 
the decomposition results for industrial carbon emission intensity, while Panel B covers low-carbon total factor 
productivity. All models are estimated following Equation (23). For ease of comparison, each component’s weight 
and point estimate are reported alongside the overall model estimate. None of the individual components are 
statistically significant at the 95% confidence level.

5.4 Endogeneity Handling
To address potential endogeneity concerns—such as reverse causality between the carbon market 

pilot and industrial low-carbon transition, or omitted variable bias—this study adopts two strategies: 
the instrumental variable (IV) approach and lagged control variables. First, we use the regional air 
circulation coefficient as an instrument for the carbon market pilot. This variable satisfies the relevance 
condition, as regions with poor air circulation typically face more severe carbon emissions, making them 
more likely to implement stringent environmental regulations such as carbon trading pilots. At the same 
time, as a natural and objective environmental characteristic, the air circulation coefficient has limited 
direct influence on industrial low-carbon transition, satisfying the exogeneity requirement. The first-
stage regression confirms the instrument’s relevance and passes the tests for under-identification and 
exogeneity. In the second-stage regression, the carbon market pilot remains positively associated with 
industrial low-carbon transition. The estimated DID coefficient is larger than in the baseline regression, 
suggesting that addressing endogeneity reveals an even stronger policy effect. Second, acknowledging 
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that finding a perfect instrument is challenging and instrument selection is not always unique, we also 
follow the approach of Xu & Sun (2023) by lagging all control variables by one period. This further 
mitigates potential endogeneity concerns, and the results remain robust.

5.5 Additional Robustness Checks
To ensure that the baseline findings are not driven by confounding factors, we conduct a series of 

robustness checks. These include reconstructing the industrial low-carbon transition index, incorporating 
additional control variables, accounting for other policies in effect during the sample period, and 
applying the synthetic control method.

5.5.1 Comprehensive evaluation using the entropy method
This study incorporates both emission reduction and efficiency improvement into the evaluation 

framework, constructing a multidimensional indicator system across four dimensions: energy 
conservation and emission reduction, structural upgrading, technological progress, and factor 
intensiveness. The entropy method is employed to comprehensively assess industrial low-carbon 
transition. Regression results indicate that the pilot policy continues to significantly promote industrial 
low-carbon transition.

5.5.2 Incorporating additional control variables
While the baseline regression controls for province fixed effects and several regional-level variables, 

there may still be omitted variables that influence industrial low-carbon transition in the pilot provinces, 
potentially biasing the estimates. To address this issue, we incorporate additional observable control 
variables, including structural optimization, urbanization, and technological progress. Results show 
that although the coefficient of the core explanatory variable slightly decreases, it remains statistically 
significant at the 1% level, confirming the robustness of the estimated policy effect.

5.5.3 Controlling for other policy interference
To avoid estimation bias caused by overlapping policies during the sample period, this study 

accounts for three major national initiatives: the Low-Carbon City Pilot launched in 2010 (Wang & Ge, 
2022), the Air Pollution Prevention and Control Action Plan initiated in 2013 (Yang et al., 2020), and the 
“Made in China 2025” demonstration cities established between 2016 and 2017 (Wang et al., 2023). We 
introduce three corresponding policy dummy variables—policy10, policy13, and policy17—which equal 
1 if the respective policy was implemented in a province-year, and 0 otherwise. Regression results show 
that, after controlling for these policies, the coefficient on the DID policy variable remains significant at 
the 1% level, and its magnitude is nearly unchanged from the baseline. This indicates that the baseline 
results are robust to potential interference from other concurrent policies.

5.5.4 Synthetic control method
China’s carbon market pilots were not randomly assigned; instead, provinces or municipalities 

with more developed financial systems and higher levels of economic development were deliberately 
selected to take the lead in pilot implementation. These regions were also more advanced in institutional 
mechanisms and energy-saving policies, raising concerns about selection bias. While prior studies have 
often used propensity score matching (PSM) to mitigate such bias by pairing each treated province 
with a comparable control for DID estimation (Cheng & Yang, 2023; Jia et al., 2023), PSM is more 
appropriate for large micro-level datasets. In contrast, this study uses provincial-level data with a limited 
sample size, where the common support assumption may not hold, leading to poor matches and biased 
results. To address this, we apply the synthetic control method, which is more suitable for small samples. 
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This approach constructs a counterfactual control group that closely resembles the first batch of carbon 
market pilot provinces, allowing for a re-evaluation of the policy’s impact. The estimation results 
show no significant differences between the synthetic control and treatment groups prior to the policy 
announcement. However, following the official launch of the carbon market, treated regions exhibit clear 
divergence from their synthetic counterparts. Overall, these results are consistent with those from the 
baseline regression, reinforcing the validity of the main findings.

6. Mechanism Testing: How the Pilot Carbon Market Facilitates Industrial 
Low-Carbon Transition

Building on the preceding analysis that confirmed the emission reduction and efficiency-
enhancing effects of the pilot carbon market, this section employs econometric models to test 
three proposed transmission mechanisms—cost constraints, structural upgrading, and technological 
innovation (collectively referred to as “Z”). These mechanisms are theoretically conducive to promoting 
industrial low-carbon transformation. However, whether the pilot carbon market effectively activates these 
channels remains an open question. To address this, the study constructs a mechanism verification framework 
to empirically assess whether the carbon market can promote industrial low-carbon transition via these 
intermediate pathways:

                    Zit =β0+β1DIDit +β2Controlit +μi +γt +εit                    (25)

6.1 Cost Constraint
Excessive CO2 emissions have caused severe global climate impacts, making carbon emission 

control an urgent imperative. Carbon markets serve as a market-based tool to regulate total emissions 
and allocate carbon allowances. Heavily polluting enterprises, which often cannot reduce emissions 
substantially in the short term, typically face allowance shortages. In contrast, cleaner industries or 
energy-efficient firms may hold surplus allowances. Trading in the carbon market enables optimal 
reallocation of these resources.The regulatory role of the carbon market hinges on carbon pricing. As 
carbon prices rise, firms face increased production costs. This economic pressure compels high-emission 
enterprises to either adopt cleaner inputs or invest in technological upgrades to optimize input structures 
and reduce emissions. In the long term, firms that improve their low-carbon technologies can lower their 
abatement costs. This not only reduces emissions but also allows them to benefit from selling excess 
allowances, thus reinforcing a virtuous cycle: cost minimization → investment in low-carbon technology 
→ emission reduction. These dynamics contribute to improving overall industrial output performance.
Moreover, under mounting environmental regulatory pressure, highly polluting enterprises that are 
unable to bear the cost of emission reductions are likely to be phased out. The surviving firms are, on 
average, better equipped with cleaner technologies and possess stronger innovation capabilities.

As discussed earlier, the pilot carbon market may directly affect carbon emission intensity and 
indirectly influence productivity through the cost constraint mechanism. To empirically validate this 
pathway, this study examines the impact of the pilot carbon market on carbon prices. Column (1) of 
Table 3 reports a significantly positive regression coefficient when the logarithm of carbon price (lnprice) 
is used as the dependent variable. This result indicates that the pilot carbon market has effectively driven 
up carbon prices. In turn, higher carbon prices raise industrial firms’ production costs, which, via the cost 
constraint channel, reduces carbon emission intensity and enhances low-carbon total factor productivity, 
thereby promoting the industrial low-carbon transition.

6.2 Industrial Structure Upgrading
Driven by environmental pressures and market competition, outdated production capacities are 

increasingly phased out, while new drivers of growth are activated. This transition promotes the 
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transformation and low-carbon upgrading of polluting and energy-intensive industries, reducing their 
share within the industrial sector. At the same time, it increases the proportion of low-carbon industries 
and those better positioned to adapt to structural change, thereby optimizing the overall industrial layout.
In the carbon trading system, polluting and energy-intensive industries face a clear cost disadvantage. 
The previously prevalent model of achieving high output at the expense of environmental damage is 
no longer viable. Intensified market competition forces these industries to either relocate or restructure. 
Simultaneously, structural improvements support the development of clean energy sectors and foster 
an enabling environment for innovative and adaptive firms. These changes collectively drive industrial 
structure upgrading and support the broader shift toward low-carbon development. Empirical results 
in Table 3, Column (2), use the share of polluting and energy-intensive industries (highper) as the 
dependent variable. Findings show that, following the implementation of the carbon market pilot, 
this share significantly declined, with an average reduction of 14.3%. This suggests that, under strong 
environmental constraints, China’s industrial sector has actively promoted clean industries and advanced 
structural optimization, thereby contributing to both emissions reduction and productivity gains—and 
ultimately, to industrial low-carbon transition.

Table 3: Mechanism Test Analysis

Variable
(1) (2) (3)

lnprice highper lnpatent

DID
3.063*** -0.143*** -0.122

(0.143) (0.048) (0.084)

_cons
-0.372 -5.687* 2.556

(1.770) (2.945) (3.058)

Control variable YES YES YES

Year fixed effects YES YES YES

Province fixed effects YES YES YES

N 480 330 480

adj. R2 0.926 0.617 0.942

6.3 Technological Progress
As the core component of carbon market development, the carbon emissions trading system 

serves as a market-based regulatory instrument that plays a vital role in advancing the low-carbon and 
sustainable transformation of China’s industrial sector. Existing literature—much of it grounded in 
the Porter Hypothesis—remains divided on whether environmental regulations effectively stimulate 
technological innovation to achieve sustainable economic growth. The impact of environmental 
regulation on innovation typically reflects two opposing forces: the innovation compensation effect, 
where innovation offsets compliance costs, and the compliance cost effect, where such costs hinder 
innovation. The balance between these effects varies across empirical studies, but there is broad 
agreement that firms must invest considerable technological effort to reap the benefits of innovation 
compensation. By turning carbon into a tradable commodity, the carbon market presents firms with two 
potential responses to excess emissions: purchasing additional allowances or reducing emissions through 
technological innovation. The decision depends on cost-benefit trade-offs—firms are more likely to 
pursue innovation when carbon prices are high or volatile, as this reduces long-term abatement costs. 

Due to data limitations, this study uses the number of invention patents granted to above-scale 
industrial enterprises as a proxy for technological progress, measured by the logarithm of invention 
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patents (lnpatent), which reflects R&D output. According to the results in Table 3, Column (3), 
the pilot carbon market has not produced a statistically significant increase in the number of invention 
patents.

This finding suggests that, although the rising cost of carbon emissions may provide incentives for 
innovation, actual technological progress is constrained by long R&D cycles, technical barriers, and 
inherent uncertainties. These factors likely explain the lack of a significant effect in the short term. As a 
result, the pilot carbon market has not yet substantively advanced industrial low-carbon transition via the 
technological progress channel.

Hence, Hypothesis 2 is fully supported.

7. Spillover Effects and Heterogeneity Analysis of the Pilot Carbon Market 
Policy on Low-Carbon Transition

As previously noted, unbiased estimation of policy effects using the DID approach relies on the 
parallel trends assumption and the absence of spillover effects. This section tests for potential spillovers 
from the pilot carbon market policy and further explores whether the low-carbon transition varies across 
regions and industries under the carbon market and emission reduction goals.

7.1 Spillover Effects
Prior studies have found strong spatial correlations in pollution emissions across Chinese regions, 

suggesting that pilot carbon market policies may generate spatial spillover effects. For example, 
Dong & Wang (2021) identified a demonstration effect, whereby the implementation of local carbon 
trading policies led to emission reductions in neighboring regions.To provide background, this study 
calculated pre-policy industrial carbon emission intensity across provinces. Ningxia had the 
highest intensity—averaging 20.61 tons of CO2 per 10,000 yuan of industrial added value—
followed by Inner Mongolia, Guizhou, Shanxi, and Gansu, all around 10 tons per 10,000 yuan. 
Following Clarke and Mühlrad (2021), two approaches were used to test for spillover effects: first, 
an interaction term (highEI) was added between post-policy implementation and provinces with high 
emission intensity, excluding the seven pilot provinces. Second, eight provinces neighboring the pilot 
regions (Hebei, Zhejiang, Guangxi, Jiangxi, Anhui, Hunan, Guizhou, and Sichuan) were selected4. An 
interaction term (Spill) between post-policy implementation and these provinces was included in the 
baseline regression. The results, reported in Table 4, show no significant evidence that the pilot policy 
influenced emissions or efficiency in non-pilot provinces. This confirms that the baseline DID estimates 
are both credible and unbiased.

4 Eight provinces neighboring the pilot regions (Hebei, Zhejiang, Guangxi, Jiangxi, Anhui, Hunan, Guizhou, and Sichuan) were selected.

Table 4: Analysis of Spillover Effects

Variable
Provinces with high industrial carbon 

emission intensity Neighboring provinces

lnco2ei tfp lnco2ei tfp

DID
-0.287*** 0.103***

(0.081) (0.033)

highEI
0.072 -0.011

(0.068) (0.024)

Spill
-0.110 0.019
(0.082) (0.031)
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7.2 Heterogeneity Analysis

7.2.1 Regional heterogeneity
While the preceding analysis has evaluated the average effect of the pilot carbon market policy on 

China’s industrial low-carbon transition, regional disparities in economic development, technological 
capacity, and investment environments may result in heterogeneous impacts. In general, economically 
developed regions tend to have more advanced industrial structures, enabling them to more effectively 
reduce carbon emission intensity and capitalize on the benefits of carbon market mechanisms. These 
regions also have the resources—both human and financial—to support carbon market implementation 
and to drive the growth of tertiary and low-carbon industries. In contrast, less developed regions 
may lack the technical expertise and financial capacity to improve productivity while also reducing 
emissions. Technological capability plays a central role in determining regional productivity outcomes. 
Regions with stronger innovation capacity can reallocate inputs more efficiently through technological 
progress—for example, by increasing the use of clean energy to lower emissions or by reducing total 
input use to enhance productivity. By contrast, regions with weaker R&D systems are more likely to rely 
on outdated production technologies due to innovation barriers, leading to divergent effects in emission 
reduction and efficiency gains. In addition, the carbon market policy may channel both domestic and 
foreign investment into low-carbon industries. Regions with favorable investment environments are 
better positioned to attract these investments, enhancing their industrial competitiveness and driving 
productivity improvements through innovation-led growth.

To explore the heterogeneous effects of the pilot carbon market policy on regional industrial low-
carbon transition, this study incorporates interaction terms between the DID policy indicator and key 
regional characteristics into the baseline regression model. A significant interaction term coefficient 
confirms the presence of heterogeneity. Table 5 reports the results of subgroup regressions. Group 1 
includes the interaction between the pilot carbon market policy and per capita GDP. For carbon emission 
intensity (lnco2ei) as the dependent variable, the interaction term is significantly negative, indicating 
stronger emission reductions in more developed areas. For low-carbon total factor productivity (TFP) as 
the dependent variable, the interaction term is significantly positive, showing greater productivity gains 
in more developed areas. These findings suggest that carbon markets drive more effective low-carbon 
industrial transformation in more developed areas.

Group 2 incorporates an interaction term between the DID policy indicator and technology market 
turnover, a proxy for regional R&D capacity, into the regression. The results show that the interaction 
term’s coefficients are statistically significant for both lnco2ei and TFP. This indicates that carbon 
markets in regions with higher R&D capacity drive greater emission reductions and productivity gains. 
These findings align with the theoretical mechanism outlined earlier, confirming that carbon trading 
promotes low-carbon industrial transformation through technological progress. Group 3 incorporates 

Variable
Provinces with high industrial carbon 

emission intensity Neighboring provinces

lnco2ei tfp lnco2ei tfp

_cons
-3.881 1.763 -1.114 1.139
(4.435) (1.788) (3.164) (1.293)

Control variables YES YES YES YES
Year fixed effects YES YES YES YES
Province fixed effects YES YES YES YES
N 368 368 480 480
adj. R2 0.765 0.633 0.807 0.727

Table 4 Continued
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the interaction between the DID policy indicator and regional openness, measured by foreign direct 
investment (FDI), into the regression. When the dependent variable is carbon emission intensity (lnco2ei), 
the interaction term is not statistically significant, but the DID coefficient is significantly negative, 
indicating consistent emission reductions across regions regardless of investment environment. When 
the dependent variable is low-carbon total factor productivity (TFP), the interaction term is significantly 
positive, revealing heterogeneous productivity effects. Areas with stronger investment environments 
attract greater investment in low-carbon technology R&D under carbon market policies. This increased 
investment, combined with enhanced market competition from greater firm participation, boosts R&D 
output and improves factor productivity.

Table 5: Regional Heterogeneity Analysis

Variable
Group 1 Group 2 Group 3

lnco2ei tfp lnco2ei tfp lnco2ei tfp

DID
0.236 -0.185* 0.210 -0.117* -0.184*** 0.041

(0.201) (0.092) (0.189) (0.063) (0.062) (0.024)

DID×lnpgdp
-0.285* 0.163**
(0.139) (0.060)

DID×lntmt
-0.074** 0.034***
(0.030) (0.012)

DID×FDI
-0.095 0.076**
(0.067) (0.033)

_cons
-0.804 1.076 -1.119 1.224 -1.217 1.405
(3.267) (1.268) (3.346) (1.300) (3.419) (1.313)

Control variable YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Province fixed effects YES YES YES YES YES YES
N 480 480 480 480 480 480
adj. R2 0.807 0.734 0.809 0.733 0.803 0.731

7.2.2 Industry heterogeneity
Under the dual context of rising environmental pressure and the establishment of the carbon 

market system, industries exhibit distinct responses in behavior and decision-making. High-pollution 
industries—which emit large volumes of greenhouse gases such as CO₂ and SO₂—pose major 
challenges to sustainable development. These sectors often face carbon allowance shortfalls and must 
purchase additional quotas through the carbon market to maintain output levels. As a result, they are 
more directly affected by carbon pricing policies, which may also stimulate technological innovation as 
a response to regulatory and cost pressures. In contrast, mid- and low-pollution industries are subject to 
less direct environmental pressure, as their production processes are less dependent on carbon emissions. 
Consequently, their motivation for adopting low-carbon technologies or transforming production 
practices may stem more from reputational considerations than regulatory necessity. These differences 
suggest that the pilot carbon market policy may exert heterogeneous effects across industries. To test 
this, the industrial sector is classified into high-pollution and mid-low-pollution categories, and the 
Regression results are reported in Table 65.

5  Following the approach of Pan (2019), high-pollution industries include chemical manufacturing, chemical fibers, nonferrous and 
ferrous metal smelting and mining, coal mining, power and heat supply, petroleum extraction and processing, leather and footwear, paper 
manufacturing, textiles, non-metallic mineral products, and rubber and plastics. All other industrial sectors are grouped as mid-low pollution 
industries.
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Table 6 reports the regression results based on the adjusted full sample6, as well as separate 
regressions for high-pollution and mid-to-low-pollution industries. All regressions control for year, 
province, and industry fixed effects, with control variables retained at the provincial level, and standard 
errors clustered by province. The results indicate that the baseline effects of the pilot carbon market 
on emission reduction and efficiency improvement in China’s industrial sector are robust. Subsample 
analysis shows that the pilot carbon market policy significantly reduces carbon emission intensity in 
high-pollution industries, but exhibits no statistically significant heterogeneous effects for mid-to-low-
pollution industries or for low-carbon total factor productivity across industry types. These findings 
suggest that the emission reduction effect of the pilot carbon market is primarily concentrated in high-
pollution industrial sectors.

Table 6: Industry Heterogeneity Results

Variable
Total samples High-pollution sectors Mid-and low-pollution Sectors

lnco2ei tfp lnco2ei tfp lnco2ei tfp

DID
-0.199* 0.053* -0.213*** 0.048 -0.185 0.057
(0.098) (0.005) (0.068) (0.058) (0.175) (0.055)

_cons
-1.866 -2.819 -2.421 -5.597* 2.476 -0.058
(6.033) (2.904) (5.186) (3.169) (9.516) (3.877)

Control variables YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Province fixed effects YES YES YES YES YES YES
Industry fixed Effects YES YES YES YES YES YES
N 840 480 420 240 420 240
adj. R2 0.953 0.696 0.977 0.851 0.889 0.811

8. Research Conclusions and Policy Recommendations
Based on provincial panel data from 2006 to 2021, this study constructs a theoretical mechanism 

model and employs a multi-period DID approach to comprehensively evaluate the environmental and 
economic effects of China’s pilot carbon market policy. The main conclusions are as follows:

First, the pilot carbon market has significantly reduced carbon emission intensity in China’s 
industrial sector while improving low-carbon total factor productivity. These results remain robust after 
a series of tests, including the parallel trend test, placebo test, and multiple robustness checks.

Second, the carbon market mainly promotes industrial low-carbon transition by strengthening 
cost constraints and facilitating industrial structure upgrading. These are the two primary transmission 
channels. However, the policy has not yet demonstrated a significant effect on technological progress, 
which is considered a core driver of long-term low-carbon industrial transformation.

Third, the impact of the carbon market exhibits regional heterogeneity. Specifically, regions with 
higher levels of economic development and R&D capacity show more significant emission reduction 
and efficiency improvement effects. In contrast, while foreign investment intensity does not result in 
heterogeneous effects on emission reduction, it does significantly enhance productivity in regions with 
stronger investment environments.

Under the context of the national “carbon peaking and neutrality” goals and increasing environmental 
pressures, a well-developed carbon emissions trading market may serve as a new pathway for industrial 
restructuring and transformation in China. It also constitutes a critical foundation for the establishment 

6  Full-sample data covers the period from 2008 to 2016.
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of a unified national carbon market across the entire industrial chain. Based on the above findings, this 
study offers the following policy recommendations:

(1) Given the carbon market’s key role in driving industrial low-carbon transformation, China 
should actively advance its carbon market development. By analyzing regional differences in industrial 
growth and carbon emissions, the carbon market should include more pilot provinces or regions 
and steadily expand its scope. Local governments and carbon trading institutions should organize 
collaborative exchange activities to discuss and propose practical recommendations for carbon market 
development. The government should increase financial allowances, recruit skilled professionals to 
design robust mechanisms, and build a fair and efficient carbon trading system. These steps aim to 
create clear pathways for achieving regional development and emission reduction goals while delivering 
effective solutions to environmental challenges.

(2) Crafting sustainable development plans tailored to regional and industrial characteristics—
such as industrial features, development stages, economic conditions, and spatial layouts—is essential. 
These plans should clearly define transformation pathways for traditional industrial regions to align 
with national goals for industrial restructuring. This approach fosters a virtuous cycle of “industrial 
transformation — environmental improvement — emergence of new industries — elimination of 
outdated capacities — further industrial transformation”, ultimately driving sustainable development 
across both industrial and other sectors.

(3) Supporting innovative enterprises through tax incentives, allowances, and similar measures 
is key to stimulating investment in low-carbon technologies, talent development, and the resolution 
of R&D challenges. At the same time, improving the investment climate will help attract funding 
for low-carbon research and development projects. Together, these initiatives will enhance market 
competitiveness, increase R&D output, and raise production efficiency, achieving a harmonious “win-win” 
of emission reduction and economic gain.

(4) Empowering local regions to develop diverse carbon trading models allows for approaches that 
reflect specific emission reduction needs. These models should emphasize the growth of carbon finance 
products and services, while encouraging greater participation from regulated entities and market players 
in emissions control and trading. By fully leveraging the synergy between efficient markets and state 
capacity, we can accelerate the full harmonization of regional carbon markets with the national carbon 
market framework.    
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