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Abstract: This study explores the mechanisms by which China’s pilot carbon emissions
trading schemes (ETS) facilitate industrial low-carbon transitions. We construct a

theoretical model and conduct an empirical analysis using provincial panel data from seven
pilot provinces spanning 2006-2021. Applying a multi-period difference-in-differences
(DID) approach, we evaluate the environmental and economic impacts of the pilot ETS
policies. The findings yield three key insights: (1) The pilot ETS significantly reduces
carbon emission intensity and improves low-carbon total factor productivity (TFP), thereby
promoting China s industrial low-carbon transition. (2) Mechanism analysis indicates that
the ETS primarily operates through cost constraints and industrial structural upgrading,
while the effect of technological progress has yet to fully materialize. (3) Heterogeneity
analysis reveals that the policys effects are more significant in regions with higher levels
of economic development and R&D investment, leading to greater carbon intensity
reductions and productivity gains. In addition, regions with higher foreign direct investment
(FDI) experience more substantial improvements in low-carbon TFP, possibly reflecting
technology spillover effects.
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1. Introduction

For decades, industry has powered China’s rapid economic growth, driving its economic
restructuring efforts. Since the early 21* century, the conflict between industrial development and
environmental protection has become increasingly apparent. Heavy reliance on fossil fuels has led
to high levels of emissions, contributing to climate change and environmental degradation. These
challenges have made it imperative for China to transform its development model and pursue high-
quality growth under a new development paradigm. In recent years, driven by growing environmental
policy constraints, China’s development agenda has increasingly centered on a new path to
industrialization, energy efficiency improvements, and emissions reductions. Against this backdrop,
the carbon emissions trading market, or “carbon market”, emerged. Pilot ETS programs were launched
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in Beijing, Shanghai, Tianjin, and Guangdong in 2013, followed by Hubei and Chongqing in 2014,
and Fujian in 2016. These pilot programs have become key instruments for achieving China’s “carbon
peaking and neutrality” goals—peaking carbon emissions by 2030 and reaching carbon neutrality by
2060—and have laid the foundation for a unified national carbon market. In 2017, the 19" National
Congress of the Communist Party of China (CPC) designated the construction of an ecological
civilization as a “millennium strategy”, marking a major shift that placed green development at the heart
of the national development agenda. In 2022, the 20" CPC National Congress reinforced its commitment
to proactive yet prudent carbon peaking and neutrality, promoting clean, low-carbon energy use and
advancing low-carbon transitions in industry, construction, and transportation. In this context, examining
the pilot carbon market’s impact on industrial low-carbon transition offers timely insights into China’s
evolving growth model and provides empirical support for effective policy implementation.

This paper makes three key contributions. First, it introduces a new theoretical perspective on
industrial low-carbon transition by focusing on the pilot carbon trading policy. We construct a quasi-
natural experimental setting to evaluate the impact of pilot ETS programs on industrial decarbonization,
examining how industries can achieve both emission reductions and efficiency gains. We also explore
regional and sectoral differences in the transition process under the constraints of the carbon market and
emission reduction targets. Second, we apply a multi-period difference-in-differences (DID) method for
policy evaluation, contributing to the growing body of literature on the impact of carbon trading schemes
on industrial transformation. Third, we investigate the mechanisms through which the pilot carbon
market influences industrial decarbonization, focusing on cost constraints, structural upgrading, and
technological progress. The findings provide actionable policy recommendations to support industrial
low-carbon transition and advance China’s carbon peaking and neutrality goals.

2. Literature Review

Since the launch of China’s pilot carbon emissions trading schemes (ETS), scholars have extensively
examined their impacts, which can be broadly categorized into two strands: environmental effects and
economic effects.

The first strand focuses on environmental outcomes, particularly whether pilot ETS reduce
carbon emissions and emission intensity. Most studies find that the ETS has had a significant emission
reduction effect and strong mitigation potential. For example, Zhang et al. (2017) reported that total
carbon emissions from 635 industrial enterprises in Shenzhen declined by 11% from 2010 to 2015,
indicating the emerging effectiveness of market mechanisms in promoting decarbonization. Li & Zhang
(2017) identified key influencing factors—such as energy intensity, emission coefficients, and energy
consumption structure—and used a stochastic frontier analysis (SFA) model to examine how the ETS
improves energy and technical efficiency and allocative efficiency. Li (2021) demonstrated the existence
of spatial emission reduction effects resulting from the pilot policy. Wu et al. (2021) constructed a
theoretical model of synergy between market mechanisms and administrative interventions, analyzing
both the theoretical logic and empirical evidence of their combined impact on emission reduction. Wang
et al. (2022) reached similar conclusions. Cheng & Yang (2023), using panel data from 30 provinces,
also confirmed the carbon mitigation effects of pilot ETS and further examined mediating channels such
as green technological innovation and energy structure transformation.

The second strand of research explores economic effects, with a particular emphasis on total factor
productivity (TFP). Many studies suggest that the pilot ETS has a positive impact on green or low-
carbon TFP, thereby contributing to sustainable economic growth (Dong & Wang, 2021; Sun et al., 2022;
Jia et al., 2022; Hu et al., 2023). This has important implications for promoting high-quality and green
development (Jing, 2022; Zheng & Yao, 2023). Other research has examined the effects of the pilot
ETS on industrial structure, energy efficiency, technological innovation, and corporate value. Regarding
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industrial structure, Tan & Zhang (2018), Liu & Cheng (2022), among others, argue that the carbon
market reshapes firms’ cost-benefit dynamics. To offset the cost pressures of environmental compliance,
firms adjust factor allocation, product mix, and technology strategies, thereby driving structural
upgrading at the macro level. In terms of energy efficiency, ETS facilitate more efficient allocation of
resources and production factors, allowing cleaner and more efficient firms to thrive, thus encouraging
green technological progress and improvements in overall energy use efficiency (Zhu & Sun, 2022).

In the area of technological innovation, existing research has shown that carbon trading policies
can transmit expectations to firms through a “signal-anticipation” mechanism even before their official
implementation, thereby encouraging firms to engage in low-carbon technological innovation (Wang et
al., 2020). These innovations include technologies that achieve lower carbon emissions, zero-emission
non-negative carbon technologies, and negative-carbon technologies that offset necessary emissions
during production processes (Cao & Su, 2023), all of which help enterprises reduce expenditures on
purchasing carbon quota or generate income by selling surplus quota. In terms of corporate value, carbon
credit is regarded as a form of property right—an asset with both tangible and option value. Firms
with lower carbon intensity often possess surplus allowances and face lower marginal abatement costs,
enabling them to profit and realize value appreciation (Shen & Huang, 2019). Furthermore, research
has found that carbon trading policies significantly enhance overall economic welfare (Zhang & Wang,
2022).

Despite these insights, important questions remain underexplored:

(1) Can pilot ETS effectively promote the low-carbon transition of the industrial sector?

(2) Are there differences in policy effects between pilot and non-pilot regions?

(3) How do the impacts vary across regions and industrial sectors?

(4) How can the ETS be further optimized to support industrial transformation?

Addressing these questions holds both theoretical and practical significance for understanding
China’s industrial development, evaluating ETS policy effectiveness, and informing strategies to achieve
the “carbon peaking and neutrality” goals. This paper investigates the relationship between pilot ETS
policies and industrial low-carbon transition, aiming to provide empirical evidence for improving carbon
governance and supporting industrial modernization.

3. Theoretical Analysis and Hypotheses

Drawing upon the research frameworks of Deng & Yang (2019) and Wen & Liu (2022), this paper
constructs a theoretical model incorporating carbon pricing, technological progress, and industrial
structural adjustment. The model is designed to analyze the mechanisms through which the pilot carbon
market influences the industrial low-carbon transition. Assume a region with two production sectors:
X and Y. Sector X produces product x and generates carbon emissions z during its production process.
Sector Y produces a clean product y, whose production involves no carbon emissions. Let the price of
product x be p, and the price of product y be normalized to 1. Both sectors employ capital (K) and labor
(L), with their respective factor prices denoted by 7 (capital) and w (labor). The production functions
for both products are specified in the Cobb-Douglas (C-D) form, as follows for product x and product y,
respectively:

F(K, L)y=K!L,” (1)

F(K,, L)=K] L\" )

In the absence of environmental regulations, the output of product x is directly proportional to
carbon emissions z. However, under environmental regulatory pressure, firms must allocate a portion
of their production factors, denoted by 8, to carbon emission control efforts (6 €[0,1]). As a result, the
production functions for product x and carbon emissions z are, respectively, as follows:
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x=F((1-0)K,, (1=0)L)=(1-0)K/' L,” 3)
z=p(OF(K,, L)y=p(OKL,” “)

Where ¢(60) is a decreasing function of @, reflecting the level of carbon emission governance. Let
p(0)=4"'(1-0)", where A denotes the level of production technology, with a€(0,1). At this point, the
new expression for product x can be derived as:

x=(Az)'F"™ (5)
Without considering environmental regulations, firms in sector X, like those in sector Y, aim to
minimize costs according to equations (1) and (2), i.e.,
¢/ (w, ry=min{rK +wL,, F(K,, L,)=1} (6)

¢ (w, =min{rK,+wL, F(K,, L,)=1} (7)
Let M=(1-5)""/p” and N=(1-9)°"'/5°. Then, the average production costs of the two products are,
respectively:
C=Mr"w"’ ®)
C,=Nr'w"?’ 9)
Assume that all carbon emissions z from sector X are traded in the carbon market, with the carbon

price pt determined by market supply and demand. The cost minimization problem for firms in sector X
then becomes:

c*(c”, p)=min{p,Az+c"F, (4z)"F' =1} (10)

The solution is: p,/c"=aF/(1-a)Az (11)
Assume a perfectly competitive market in which firms satisfy the zero-profit condition, i.e.,

px=c'F+p,Az (12)

Substituting equation (11) and simplifying yields: z=apx/Ap, (13)

Furthermore, carbon emission intensity can be expressed as: z 1o, m (14)

pxty p, A pxty
As shown in equation (14), under the constraints of the pilot carbon market, carbon emission
intensity is jointly determined by three key factors: the carbon price, technological progress, and
adjustments in industrial structure.
In a competitive market, the price of each commodity equals its production cost. From equations
(3)-(4), (8)-(9), and (12), we obtain Mr’w'"=P=p(1-0)—p,(1-6)"“, Nr’w'°=1. Then, the factor prices

can be derived as:
s 3 - 1-0
(LMY (L))
W_(N) (P) ’r_(N) (P) (1)
According to Shepherd’s Lemma, the input demands per unit of products x and y can be determined,
and the total factor input is given by:
L=L x+L,y=M(1-B)r’'w’x+N(1-6)r’w "’y (16)
K=K x+K)y =MBr" W x+Nor*'w' ™y (17)
The equilibrium outputs of sectors X and Y are then:

L[t

_\U=0or L y= 1pr H (18)
(5w C) B
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_ X 1(5~0) . o
From equation (15), we have %:SP”(H), and parameter S=(%) . Taking the derivative of

equation (18) with respect to the carbon price p; allows us to observe the impact of the pilot carbon
market on the equilibrium outputs of the two products:
)2 sl
ox _ ox 0P _SpS'P77 ' L(1-0)(1-B)S" ‘P77 oP.
op, OP op, (p—0y'M op,

1

<0 (19)

%

Oy _ 0y OP (5/)’S5P0 IL+(1-0)(1-)S”'P ”K@i

op, OP op, (p—0)'N op,

Furthermore, this paper measures production efficiency by the ratio of the total output of the two
sectors to the total factor input:

>0 (20)

LAYi _ AX Ty
PE=&i- 21
2l LK 1)
Let 4, and y; denote the proportions of the i" output and the j” input, respectively. Then, the impact
of the pilot carbon market on production efﬁciency is:

OPE Q ai)
p: f “op, " 3p, (22)

From equation (22), combined with (19) and (20), it is evident that the market mechanism can
influence industrial structure adjustment by reducing the production of carbon-intensive products and
increasing the output of cleaner products, thereby affecting regional production efficiency. Given a
region’s fixed factor endowments f, 1mprovements in technological progress can also influence economic
output via market mechanisms 0P/0p,=—(1— 9)"——A ¢(60), thereby enhancing production efficiency.
Therefore, the pilot carbon market can influence both industrial structure and technological progress by
imposing cost constraints through its price mechanism, which in turn affects production efficiency. Based
on this, the paper argues that the pilot carbon market promotes low-carbon transition by imposing cost
constraints, encouraging structural upgrading, and incentivizing technological innovation in industrial
sectors. The specific mechanism is illustrated in Figure 1.
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Figure 1: How Pilot Carbon Markets Drive Low-Carbon Industrial Transformation
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Based on the theoretical model above, and drawing from equations (14) and (22), the following
hypothesis is proposed:

Hypothesis 1: The pilot carbon market is conducive to promoting the process of industrial low-
carbon transition.

Existing research indicates that cost constraints serve as an intrinsic incentive for firms to pursue
transformation and innovation (Zhao & Li, 2023). Since carbon pricing affects the production costs
of industrial goods, firms are compelled either to adopt cleaner alternative inputs to reduce costs or to
leverage technological advancements to adjust input combinations, thereby maintaining or enhancing
productivity to stay competitive and profitable. The higher the cost of carbon emissions, the greater the
pressure on high-emission firms to adopt low-carbon strategies, which in turn increases demand for low-
carbon technologies and promotes industrial decarbonization. The carbon trading mechanism plays a
direct role in shaping the carbon market’s pricing system (Shen & Huang, 2019) and offers firms greater
incentives to innovate and transition toward low-carbon operations (Tan & Zhang, 2018). Upgrading
industrial structures is a crucial aspect of green industrial transformation (Peng, 2016). Structural
improvements support the development of the clean energy sector, foster an enabling environment for
innovative, adaptive, and resilient enterprises, and stimulate both upstream and downstream industries to
produce or adopt cleaner products. This facilitates the formation of low-carbon industrial supply chains
and promotes comprehensive industrial upgrading and decarbonization.

Moreover, the positive impact of technological progress on output growth has been widely
recognized in the literature (Bai et al., 2016, 2017). In particular, the development of low-carbon
technologies provides essential support for cleaner production processes, equipment upgrades, and
the R&D of new products, all of which contribute to pollution reduction and low-carbon industrial
transformation (Li et al., 2013). Technological advancements in one sector can not only aid internal
emission reductions or productivity gains but also generate spatial spillover effects (Jia et al., 2023).
Through pilot carbon markets, such innovations can diffuse across the broader industrial landscape for
shared learning. Additionally, competition among peers motivates firms to increase R&D investment in
pursuit of higher innovation output, enabling them to attain technological leadership and sustain their
competitive advantage.

Based on this theoretical foundation, we propose the following hypothesis:

Hypothesis 2: The pilot carbon market promotes low-carbon transformation through three channels:
(1) tightening cost constraints, (2) accelerating industrial restructuring, and (3) spurring technological
innovation.

4. Empirical Research Design

4.1 Identification Strategy

Given the staggered implementation of the pilot carbon market across different provinces, this study
adopts a multi-period DID approach to accurately identify the policy’s effects over time. This method
allows for the assessment of both emission reduction and economic efficiency impacts of the carbon
market as an environmental regulatory instrument. Specifically, it evaluates the effectiveness of China’s
industrial low-carbon transition under the carbon trading mechanism, from the dual perspectives of
emission control and productivity enhancement. The multi-period DID model is specified as follows:

Y, =Bytp.DID,,+p,Control, +u;+y, +e, (23)

In this equation, i denotes the province and ¢ denotes the year. The dependent variable Y includes
carbon emission intensity and low-carbon total factor productivity. The core explanatory variable DID is
defined as DID,=treat*post,, where treat; indicates whether a region is part of the carbon market pilot,
and post, reflects whether the pilot program has been implemented in that year. Control represents a set
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of control variables that account for local characteristics potentially affecting the industrial low-carbon
transition. x; and y, denote province and year fixed effects, respectively, while ¢, is the random error term.

4.2 Variable Description

4.2.1 Dependent variable

The dependent variable in this study is industrial low-carbon transition, which reflects not only
reductions in carbon emissions but also fundamental changes in the mode of industrial development.
Drawing on the definition proposed by Zhou et al. (2022), industrial low-carbon transition refers to
the transformation of China’s industrial development model through energy conservation, emission
reduction, structural upgrading, and technological advancement, aiming to achieve the dual objectives
of output growth and emission reduction. This study adopts this definition and measurement approach
to assess industrial low-carbon transition through two indicators: carbon emission intensity and low-
carbon total factor productivity. It measures emission reduction using the logarithm of provincial
industrial carbon emission intensity (/ncoZei) as the dependent variable, with data sourced from the
China Emission Accounts and Datasets (CEADs). For productivity gains, it uses low-carbon total factor
productivity (TFP) as the dependent variable, calculated via the super-efficiency slack-based measure
(SBM) model.

Following the approach of Li et al. (2013) and Zhou et al. (2022), this study employs a super-
efficiency SBM model incorporating undesirable outputs to reflect environmental impacts within the
total factor productivity framework. This model includes input variables, desirable outputs, and
undesirable outputs. Input variables consist of capital, labor, and energy. Specifically, capital
is measured by the annual average balance of net fixed assets of industrial enterprises, labor is
measured by the annual average number of industrial employees, and energy input is measured
by total industrial energy consumption. These data are sourced from the China Industrial Economy
Statistical Yearbook. For missing data in 2017 and 2018, linear interpolation is used to fill in the gaps.
Industrial added value serves as the desirable output, while carbon dioxide emissions are treated as the
undesirable output.

4.2.2 Core explanatory variable

The core explanatory variable is the DID term, defined as treat;xpost,. This variable identifies
treatment and control groups based on whether the region is subject to the pilot carbon market policy.
The treatment group includes seven pilot provinces and cities: Beijing, Shanghai, Tianjin, Guangdong,
Hubei, Chongqing, and Fujian. All other non-pilot regions serve as the control group. The treat,xpost,
variable equals 1 (treat;xpost, = 1) if province i is Beijing, Shanghai, Tianjin, or Guangdong and year ¢ is
2013 or later; or if province i is Hubei or Chongqing and year ¢ is 2014 or later; or if province i is Fujian
and year ¢ is 2016 or later. In all other cases, treatxpost, is set to 0 (treat,<post, = 0).

4.2.3 Control variables and other variables

In addition to the core explanatory variable—the pilot carbon market policy—this study includes
a range of control variables that may influence the regional industrial low-carbon transition, based
on established literature. The level of regional economic development (PGDP) is measured by the
logarithm of per capita regional GDP, adjusted to 2006 constant prices using the GDP deflator. Economic
agglomeration (/npop) is proxied by the logarithm of population density, while regional research and
development capacity (/ntmf) is captured by the logarithm of the technology market transaction volume.
Openness to foreign investment (FDI) is measured as the share of total foreign investment in regional
GDP. Government expenditure (GOYV) is represented by the ratio of general public budget expenditure
to regional GDP. The industrial structure (/NS) is defined as the proportion of industrial added value
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in regional GDP. The number of industrial enterprises ([nNfirm) is measured by the logarithm of the
number of above-scale industrial enterprises in each province. Energy prices (EP) are measured using
the fuel price index extracted from each region’s commodity retail price index.

In the mechanism analysis, the study further incorporates specific variables to measure relevant
channels. The carbon price (/nprice) is represented by the logarithm of the annual average of daily
closing prices. Industrial structure upgrading (highper) is measured by the proportion of output from
high-energy-consuming industries'. This variable serves as a negative indicator, where a higher value
implies lower structural upgrading. Technological progress (Inpatent) is measured by the logarithm of
the number of invention patents granted to above-scale industrial enterprises.

4.3 Data Sources and Descriptions

4.3.1 Data sources

This study is based on panel data covering 30 provinces in China from 2006 to 2021, excluding the
Xizang Autonomous Region. Except for carbon dioxide emissions and energy consumption, all regional-
level data are obtained from the China Statistical Yearbook (2007-2022) and the China Environmental
Statistical Yearbook. For the missing 2018 data on provincial industrial added value, the national ratio
of industrial added value to secondary industry added value is used as a uniform coefficient to estimate
the provincial values. For the heterogeneity analysis, industry-level data on carbon emissions and energy
consumption are sourced from the China Emission Accounts & Datasets (CEADs), based on the CEADs
industry classification. The study retains only industrial sectors and consolidates them into 36 aggregated
categories. Because energy consumption comprises multiple sources—including coal, petroleum, natural
gas, electricity, heat, and others—with different measurement units that cannot be directly aggregated,
all energy types are converted into standard coal equivalent (10,000 tons) using the reference coefficients
provided in the China Energy Statistical Yearbook. This conversion ensures the comparability and
consistency of energy consumption data across sectors and provinces.
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Figure 2: Annual Averages of Carbon Emission Intensity and Low-Carbon Total Factor Productivity for Treatment and
Control Groups

" Following Deng (2019), who identifies six major energy-intensive sectors: chemical raw materials and chemical products manufacturing,
non-metallic mineral products, ferrous metal smelting and rolling, non-ferrous metal smelting and rolling, petroleum processing and coking, and
electric and thermal power production and supply.
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4.3.2 Descriptive characteristics of key variables

Figure 2 depicts the annual mean trends in carbon emission intensity and low-carbon total factor
productivity for the treatment and control groups. The treatment group consistently shows lower carbon
emission intensity and higher output growth than the control group. Both groups shared similar trends
before the pilot carbon market policy, confirming the parallel trend assumption. Post-policy, the treatment
group exhibits a stronger policy effect, highlighting the pilot carbon market’s role as an effective quasi-
natural experiment for studying industrial low-carbon transition across Chinese provinces. These data
patterns provide a robust foundation for applying the DID approach.

5. Analysis of the Pilot Carbon Market’s Role in Promoting Industrial Low-
Carbon Transition

5.1 Baseline Regression

This study argues that the pilot carbon market affects industrial low-carbon transition through two
main channels: reducing emissions and enhancing efficiency. Accordingly, the DID method is employed
to estimate the treatment effects of the carbon market on industrial carbon emission intensity and low-
carbon total factor productivity. Table 1 presents the baseline regression results derived from estimating
equation (1) using provincial panel data. In columns (1) and (3), regressions are performed without the
inclusion of control variables, while all regressions incorporate both year and province fixed effects.
Standard errors are clustered at the provincial level to account for within-region correlation. In terms of
emission reduction, the coefficient of the core explanatory variable DID in column (1) is significantly
negative at the 1% level, indicating that the pilot carbon market effectively suppresses industrial
carbon emission intensity. To mitigate concerns over omitted variable bias, column (2) introduces
control variables related to regional characteristics. Although the magnitude of the coefficient slightly
decreases, it remains statistically significant at the 1% level. Regarding efficiency enhancement, the
DID coefficients in columns (3) and (4) are both significantly positive at the 1% level, suggesting that
the implementation of the carbon market pilot has spurred industrial output growth and improved low-
carbon total factor productivity. Quantitatively, the results imply that the pilot carbon market reduces
carbon emission intensity by an average of approximately 25.3% and increases low-carbon total factor
productivity by about 9.7%. These findings provide preliminary empirical support for the view that the
pilot carbon market contributes to industrial low-carbon transition, thereby validating Hypothesis 1.

Table 1: Baseline Regression Analysis

1 2 3 4
Variable O @ @) @
Inco2ei Inco2ei tfp tfp
-0.317%%* -0.253%%* 0.176%** 0.097%**
DID
(0.111) (0.074) (0.045) (0.031)
1.783%** -0.827 0.540%** 1.090
_cons
(0.046) (3.295) (0.036) (1.316)
Control variables NO YES NO YES
Year fixed effects YES YES YES YES
Province fixed effects YES YES YES YES
N 480 480 480 480
adj. R’ 0.492 0.802 0.465 0.727

Note: Robust standard errors clustered at the provincial level are reported in parentheses. * p <0.1, ** p <0.05, ***
p <0.01. The same notation applies to all subsequent tables.
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5.2 Dynamic Effect Test

This study adopts the methodological framework of Beck et al. (2010) and Wu et al. (2021) to
assess the dynamic treatment effects of the pilot carbon market policy and to further validate the parallel
trends assumption underlying the DID approach. We examine a 13-year period centered on the policy
implementation year, covering six years before and six years after the official launch of the carbon
market pilot. The year that is seven years prior to implementation is excluded from the main analysis’
and instead serves as the baseline year for comparison’. Following the event study approach, we
construct a specific model based on this baseline, as detailed below.

Y, :a0+,31D;t6+182D;5+' "+1813Di6t +a, Control,-, Tty ey, (24)

The interaction term D], represents the product of the pilot year dummy variable and the
corresponding policy dummy variable. Its value is defined as follows: it equals 1 if province i is in the
J" year before or after the implementation of its carbon market pilot policy in year #; otherwise, it equals
0. All other variables retain the same meanings as in the baseline model. The coefficient / measures the
difference in industrial low-carbon transition between provinces that implemented the carbon market
pilot policy and those that did not. If /8 is statistically insignificant for j<0, it suggests no significant pre-
treatment difference in industrial low-carbon transition between pilot and non-pilot provinces, thereby
supporting the parallel trend assumption. For j>0, the coefficient S captures the annual treatment effect of
the pilot policy; if S is statistically significant, it indicates that the implementation of the carbon market
pilot had a substantive impact on industrial low-carbon transition in that year.

It is important to note that an unbiased estimation of the policy’s treatment effect depends on both
the parallel trend assumption and the absence of spillover effects—that is, the treatment should not affect
the control group. In this study, non-pilot provinces are used as the control group for evaluating the
impact of carbon market pilots. If any provinces in the control group are influenced by spillover effects
from the policy, it could distort the estimation of the true treatment effect. A more detailed discussion of
spillover effects is provided later in the text.
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Figure 3: Dynamic Effects of the Pilot Carbon Market

* This paper takes 2013, the official launch year of the carbon market pilot, as the policy shock time point. However, due to the different
implementation times of the carbon market pilot policies, a small number of samples have time points of -8, -9, and -10 relative to the policy
shock, so these small number of samples are merged into the -7 time point.

® Regarding the setting of the base period, most existing literatures use the initial year of sample observation, the year of policy
implementation, or the year before policy implementation as the comparison benchmark.
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Figure 3 illustrates the dynamic effects of the pilot carbon market on industrial low-carbon
transition. The dynamic effect regression results in Figure 3 (left) show that coefficient f is close to zero
and insignificant for the interval -6<;<-2. This indicates no significant difference in carbon emission
intensity between the treatment and control groups before the pilot carbon market policy, thus satisfying
the parallel trend assumption. The pilot carbon market’s treatment effect on emission reduction begins
to emerge when £ is at j =-1, with the carbon reduction effect reaching its peak in the fourth year after
implementation. In fact, related studies (Hu et al., 2019; Wu et al., 2021) have also found that pilot
carbon market regions exhibit an “anticipatory policy effect”. This means that after China proposed
and began preparations for carbon market construction by the end of 2011, closely related high-carbon
emission sectors proactively reduced their carbon emissions.

As shown in Figure 3 (right), coefficient £ is almost close to zero and not significantly different
from zero when j<0 , indicating no significant difference in low-carbon total factor productivity between
the treatment and control groups before the pilot carbon market policy. This again satisfies the parallel
trend assumption. The effect becomes significant when £ is at j = 3, suggesting that the pilot carbon
market’s treatment effect begins to show an efficiency-enhancing trend. Specifically, low-carbon total
factor productivity in pilot regions steadily improves in the third year after policy implementation,
significantly increases further in the fourth year, and maintains a high productivity level thereafter.
This result confirms a lagged effect of the pilot carbon market on productivity enhancement. It implies
that in the short term, industrial sectors may achieve emission reduction targets at the cost of output
growth. However, in the long run, under the dual pressures of economic growth and emission reduction,
industries achieve a new growth model of high output and low emissions through technological
improvement, industrial restructuring, and other channels.

5.3 Placebo Test and Time Heterogeneity

5.3.1 Placebo test

Following Bai et al. (2022), this study conducted a placebo test by randomly assigning policy
implementation years and treatment groups. Industrial low-carbon transition may be influenced by
concurrent policies or unobserved factors, potentially biasing estimated effects. To address this,
pseudo-carbon market pilot policies were constructed. If placebo coefficients remained significant, it
would suggest that differences between treatment and control groups stem from confounding factors.
If insignificant, it would confirm that observed effects are primarily due to the carbon market pilot,
supporting result robustness. The method involved 500 random simulations across 30 provinces, with
7 provinces randomly selected as the treatment group and implementation years randomly assigned in
each simulation, generating 500 sets of placebo dummy variables (didrandom). For emission reduction,
placebo coefficients clustered around zero, with most p-values exceeding 0.1, while the actual policy
coefficient was -0.253 and significant. For productivity enhancement, placebo coefficients were mostly
negative, with p-values above 0.1, compared to the actual policy coefficient of 0.097, which was
significant. These differences indicate that policy effects are unlikely driven by unobserved confounders,
confirming the robustness of baseline results.

5.3.2 Time heterogeneity

The staggered implementation of the carbon market pilot may introduce time-varying heterogeneity,
leading to inconsistent policy effects and biased estimations. According to Goodman-Bacon (2021),
the two-way fixed effects (TWFE) estimator is a weighted average of all possible two-by-two DID
comparisons. If regions that adopted the policy earlier are mistakenly used as controls for those treated
later, the estimated treatment effect may become exaggerated or even reversed as the sample period
extends (Baker et al., 2022). To address this issue, we follow the decomposition approach proposed by
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Goodman-Bacon (2021) to break down the overall DID coefficient from the TWFE model. This allows
us to identify the contributions of different group comparisons and isolate the “pure” treatment effect of
the carbon market pilot on China’s industrial low-carbon transition.

Table 2 presents the Goodman-Bacon decomposition results, comprising: (1) DID estimates
comparing earlier-treated regions to later-treated regions (Earlier treated vs. Later control), (2) DID
estimates comparing later-treated regions to earlier-treated regions (Later treated vs. Earlier control),
and (3) DID estimates comparing all treated regions to never-treated regions (Treated vs. Never
treated), which represent the primary effect of interest. The potentially biased DID component—
comparing later-treated regions to earlier-treated regions (Later treated vs. Earlier control)—carries a
low weight of approximately 3.2%, resulting in minimal bias in the overall treatment effect. Conversely,
the primary comparison—treated versus never-treated regions—accounts for about 96.8% of the
weight, demonstrating that valid comparisons predominantly drive the findings. These results confirm
that estimation bias from treatment timing heterogeneity remains negligible, strongly supporting the
credibility and robustness of the study’s conclusions.

Table 2: Weights and Coefficients from Goodman-Bacon (2021) Decomposition

Panel A: Inco2ei

Component - -

Weight Coefficient
Earlier treated vs. Later control 0.016 0.042
Later treated vs. Earlier control 0.015 -0.065
Treated vs. Never treated 0.968 -0.327
DID -0.317

Panel B: #p

Component - -

Weight Coefficient
Earlier treated vs. Later control 0.016 -0.003
Later treated vs. Earlier control 0.015 0.025
Treated vs. Never treated 0.968 0.182
DID 0.176

Note: The Goodman-Bacon (2021) decomposition illustrates the weights and components that constitute the
DID coefficient, where “Treated” refers to provinces implementing the carbon market pilot. Panel A presents
the decomposition results for industrial carbon emission intensity, while Panel B covers low-carbon total factor
productivity. All models are estimated following Equation (23). For ease of comparison, each component’s weight
and point estimate are reported alongside the overall model estimate. None of the individual components are
statistically significant at the 95% confidence level.

5.4 Endogeneity Handling

To address potential endogeneity concerns—such as reverse causality between the carbon market
pilot and industrial low-carbon transition, or omitted variable bias—this study adopts two strategies:
the instrumental variable (IV) approach and lagged control variables. First, we use the regional air
circulation coefficient as an instrument for the carbon market pilot. This variable satisfies the relevance
condition, as regions with poor air circulation typically face more severe carbon emissions, making them
more likely to implement stringent environmental regulations such as carbon trading pilots. At the same
time, as a natural and objective environmental characteristic, the air circulation coefficient has limited
direct influence on industrial low-carbon transition, satisfying the exogeneity requirement. The first-
stage regression confirms the instrument’s relevance and passes the tests for under-identification and
exogeneity. In the second-stage regression, the carbon market pilot remains positively associated with
industrial low-carbon transition. The estimated DID coefficient is larger than in the baseline regression,
suggesting that addressing endogeneity reveals an even stronger policy effect. Second, acknowledging
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that finding a perfect instrument is challenging and instrument selection is not always unique, we also
follow the approach of Xu & Sun (2023) by lagging all control variables by one period. This further
mitigates potential endogeneity concerns, and the results remain robust.

5.5 Additional Robustness Checks

To ensure that the baseline findings are not driven by confounding factors, we conduct a series of
robustness checks. These include reconstructing the industrial low-carbon transition index, incorporating
additional control variables, accounting for other policies in effect during the sample period, and
applying the synthetic control method.

5.5.1 Comprehensive evaluation using the entropy method

This study incorporates both emission reduction and efficiency improvement into the evaluation
framework, constructing a multidimensional indicator system across four dimensions: energy
conservation and emission reduction, structural upgrading, technological progress, and factor
intensiveness. The entropy method is employed to comprehensively assess industrial low-carbon
transition. Regression results indicate that the pilot policy continues to significantly promote industrial
low-carbon transition.

5.5.2 Incorporating additional control variables

While the baseline regression controls for province fixed effects and several regional-level variables,
there may still be omitted variables that influence industrial low-carbon transition in the pilot provinces,
potentially biasing the estimates. To address this issue, we incorporate additional observable control
variables, including structural optimization, urbanization, and technological progress. Results show
that although the coefficient of the core explanatory variable slightly decreases, it remains statistically
significant at the 1% level, confirming the robustness of the estimated policy effect.

5.5.3 Controlling for other policy interference

To avoid estimation bias caused by overlapping policies during the sample period, this study
accounts for three major national initiatives: the Low-Carbon City Pilot launched in 2010 (Wang & Ge,
2022), the Air Pollution Prevention and Control Action Plan initiated in 2013 (Yang et al., 2020), and the
“Made in China 2025 demonstration cities established between 2016 and 2017 (Wang et al., 2023). We
introduce three corresponding policy dummy variables—policy10, policy13, and policyl7—which equal
1 if the respective policy was implemented in a province-year, and 0 otherwise. Regression results show
that, after controlling for these policies, the coefficient on the DID policy variable remains significant at
the 1% level, and its magnitude is nearly unchanged from the baseline. This indicates that the baseline
results are robust to potential interference from other concurrent policies.

5.5.4 Synthetic control method

China’s carbon market pilots were not randomly assigned; instead, provinces or municipalities
with more developed financial systems and higher levels of economic development were deliberately
selected to take the lead in pilot implementation. These regions were also more advanced in institutional
mechanisms and energy-saving policies, raising concerns about selection bias. While prior studies have
often used propensity score matching (PSM) to mitigate such bias by pairing each treated province
with a comparable control for DID estimation (Cheng & Yang, 2023; Jia et al., 2023), PSM is more
appropriate for large micro-level datasets. In contrast, this study uses provincial-level data with a limited
sample size, where the common support assumption may not hold, leading to poor matches and biased
results. To address this, we apply the synthetic control method, which is more suitable for small samples.
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This approach constructs a counterfactual control group that closely resembles the first batch of carbon
market pilot provinces, allowing for a re-evaluation of the policy’s impact. The estimation results
show no significant differences between the synthetic control and treatment groups prior to the policy
announcement. However, following the official launch of the carbon market, treated regions exhibit clear
divergence from their synthetic counterparts. Overall, these results are consistent with those from the
baseline regression, reinforcing the validity of the main findings.

6. Mechanism Testing: How the Pilot Carbon Market Facilitates Industrial
Low-Carbon Transition

Building on the preceding analysis that confirmed the emission reduction and efficiency-
enhancing effects of the pilot carbon market, this section employs econometric models to test
three proposed transmission mechanisms—cost constraints, structural upgrading, and technological
innovation (collectively referred to as “Z”). These mechanisms are theoretically conducive to promoting
industrial low-carbon transformation. However, whether the pilot carbon market effectively activates these
channels remains an open question. To address this, the study constructs a mechanism verification framework
to empirically assess whether the carbon market can promote industrial low-carbon transition via these
intermediate pathways:

Zit:ﬁ0+ﬁlD[Dit+ﬁ2C0ntr01it +,Lt,« +yt+8iz‘ (25)

6.1 Cost Constraint

Excessive CO, emissions have caused severe global climate impacts, making carbon emission
control an urgent imperative. Carbon markets serve as a market-based tool to regulate total emissions
and allocate carbon allowances. Heavily polluting enterprises, which often cannot reduce emissions
substantially in the short term, typically face allowance shortages. In contrast, cleaner industries or
energy-efficient firms may hold surplus allowances. Trading in the carbon market enables optimal
reallocation of these resources.The regulatory role of the carbon market hinges on carbon pricing. As
carbon prices rise, firms face increased production costs. This economic pressure compels high-emission
enterprises to either adopt cleaner inputs or invest in technological upgrades to optimize input structures
and reduce emissions. In the long term, firms that improve their low-carbon technologies can lower their
abatement costs. This not only reduces emissions but also allows them to benefit from selling excess
allowances, thus reinforcing a virtuous cycle: cost minimization — investment in low-carbon technology
— emission reduction. These dynamics contribute to improving overall industrial output performance.
Moreover, under mounting environmental regulatory pressure, highly polluting enterprises that are
unable to bear the cost of emission reductions are likely to be phased out. The surviving firms are, on
average, better equipped with cleaner technologies and possess stronger innovation capabilities.

As discussed earlier, the pilot carbon market may directly affect carbon emission intensity and
indirectly influence productivity through the cost constraint mechanism. To empirically validate this
pathway, this study examines the impact of the pilot carbon market on carbon prices. Column (1) of
Table 3 reports a significantly positive regression coefficient when the logarithm of carbon price (Inprice)
is used as the dependent variable. This result indicates that the pilot carbon market has effectively driven
up carbon prices. In turn, higher carbon prices raise industrial firms’ production costs, which, via the cost
constraint channel, reduces carbon emission intensity and enhances low-carbon total factor productivity,
thereby promoting the industrial low-carbon transition.

6.2 Industrial Structure Upgrading
Driven by environmental pressures and market competition, outdated production capacities are
increasingly phased out, while new drivers of growth are activated. This transition promotes the
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transformation and low-carbon upgrading of polluting and energy-intensive industries, reducing their
share within the industrial sector. At the same time, it increases the proportion of low-carbon industries
and those better positioned to adapt to structural change, thereby optimizing the overall industrial layout.
In the carbon trading system, polluting and energy-intensive industries face a clear cost disadvantage.
The previously prevalent model of achieving high output at the expense of environmental damage is
no longer viable. Intensified market competition forces these industries to either relocate or restructure.
Simultaneously, structural improvements support the development of clean energy sectors and foster
an enabling environment for innovative and adaptive firms. These changes collectively drive industrial
structure upgrading and support the broader shift toward low-carbon development. Empirical results
in Table 3, Column (2), use the share of polluting and energy-intensive industries (highper) as the
dependent variable. Findings show that, following the implementation of the carbon market pilot,
this share significantly declined, with an average reduction of 14.3%. This suggests that, under strong
environmental constraints, China’s industrial sector has actively promoted clean industries and advanced
structural optimization, thereby contributing to both emissions reduction and productivity gains—and
ultimately, to industrial low-carbon transition.

Table 3: Mechanism Test Analysis

1 2) 3

Variable M ( &)

Inprice highper Inpatent

3.063%** -0.143%%* -0.122

DID

(0.143) (0.048) (0.084)

-0.372 -5.687* 2.556
_cons

(1.770) (2.945) (3.058)
Control variable YES YES YES
Year fixed effects YES YES YES
Province fixed effects YES YES YES
N 480 330 480
adj. R’ 0.926 0.617 0.942

6.3 Technological Progress

As the core component of carbon market development, the carbon emissions trading system
serves as a market-based regulatory instrument that plays a vital role in advancing the low-carbon and
sustainable transformation of China’s industrial sector. Existing literature—much of it grounded in
the Porter Hypothesis—remains divided on whether environmental regulations effectively stimulate
technological innovation to achieve sustainable economic growth. The impact of environmental
regulation on innovation typically reflects two opposing forces: the innovation compensation effect,
where innovation offsets compliance costs, and the compliance cost effect, where such costs hinder
innovation. The balance between these effects varies across empirical studies, but there is broad
agreement that firms must invest considerable technological effort to reap the benefits of innovation
compensation. By turning carbon into a tradable commodity, the carbon market presents firms with two
potential responses to excess emissions: purchasing additional allowances or reducing emissions through
technological innovation. The decision depends on cost-benefit trade-offs—firms are more likely to
pursue innovation when carbon prices are high or volatile, as this reduces long-term abatement costs.

Due to data limitations, this study uses the number of invention patents granted to above-scale
industrial enterprises as a proxy for technological progress, measured by the logarithm of invention
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patents (/npatent), which reflects R&D output. According to the results in Table 3, Column (3),
the pilot carbon market has not produced a statistically significant increase in the number of invention
patents.

This finding suggests that, although the rising cost of carbon emissions may provide incentives for
innovation, actual technological progress is constrained by long R&D cycles, technical barriers, and
inherent uncertainties. These factors likely explain the lack of a significant effect in the short term. As a
result, the pilot carbon market has not yet substantively advanced industrial low-carbon transition via the
technological progress channel.

Hence, Hypothesis 2 is fully supported.

7. Spillover Effects and Heterogeneity Analysis of the Pilot Carbon Market
Policy on Low-Carbon Transition

As previously noted, unbiased estimation of policy effects using the DID approach relies on the
parallel trends assumption and the absence of spillover effects. This section tests for potential spillovers
from the pilot carbon market policy and further explores whether the low-carbon transition varies across
regions and industries under the carbon market and emission reduction goals.

7.1 Spillover Effects

Prior studies have found strong spatial correlations in pollution emissions across Chinese regions,
suggesting that pilot carbon market policies may generate spatial spillover effects. For example,
Dong & Wang (2021) identified a demonstration effect, whereby the implementation of local carbon
trading policies led to emission reductions in neighboring regions.To provide background, this study
calculated pre-policy industrial carbon emission intensity across provinces. Ningxia had the
highest intensity—averaging 20.61 tons of CO, per 10,000 yuan of industrial added value—
followed by Inner Mongolia, Guizhou, Shanxi, and Gansu, all around 10 tons per 10,000 yuan.
Following Clarke and Miihlrad (2021), two approaches were used to test for spillover effects: first,
an interaction term (highEl) was added between post-policy implementation and provinces with high
emission intensity, excluding the seven pilot provinces. Second, eight provinces neighboring the pilot
regions (Hebei, Zhejiang, Guangxi, Jiangxi, Anhui, Hunan, Guizhou, and Sichuan) were selected’. An
interaction term (Spill) between post-policy implementation and these provinces was included in the
baseline regression. The results, reported in Table 4, show no significant evidence that the pilot policy
influenced emissions or efficiency in non-pilot provinces. This confirms that the baseline DID estimates
are both credible and unbiased.

Table 4: Analysis of Spillover Effects

Provinces with high industrial carbon . . .
. Lo . Neighboring provinces
Variable emission intensity
IncoZei tfp Inco2ei tfp
-0.287%** 0.103%**
DID
(0.081) (0.033)
0.072 -0.011
highEl
(0.068) (0.024)
-0.110 0.019
Spill
(0.082) (0.031)

* Eight provinces neighboring the pilot regions (Hebei, Zhejiang, Guangxi, Jiangxi, Anhui, Hunan, Guizhou, and Sichuan) were selected.
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Table 4 Continued
Provinces with high industrial carbon . . .
. .o . Neighboring provinces

Variable emission intensity

Inco2ei tfp Inco2ei tfp

-3.881 1.763 -1.114 1.139

cons

- (4.435) (1.788) (3.164) (1.293)
Control variables YES YES YES YES
Year fixed effects YES YES YES YES
Province fixed effects YES YES YES YES
N 368 368 480 480
adj. R’ 0.765 0.633 0.807 0.727

7.2 Heterogeneity Analysis

7.2.1 Regional heterogeneity

While the preceding analysis has evaluated the average effect of the pilot carbon market policy on
China’s industrial low-carbon transition, regional disparities in economic development, technological
capacity, and investment environments may result in heterogeneous impacts. In general, economically
developed regions tend to have more advanced industrial structures, enabling them to more effectively
reduce carbon emission intensity and capitalize on the benefits of carbon market mechanisms. These
regions also have the resources—both human and financial—to support carbon market implementation
and to drive the growth of tertiary and low-carbon industries. In contrast, less developed regions
may lack the technical expertise and financial capacity to improve productivity while also reducing
emissions. Technological capability plays a central role in determining regional productivity outcomes.
Regions with stronger innovation capacity can reallocate inputs more efficiently through technological
progress—for example, by increasing the use of clean energy to lower emissions or by reducing total
input use to enhance productivity. By contrast, regions with weaker R&D systems are more likely to rely
on outdated production technologies due to innovation barriers, leading to divergent effects in emission
reduction and efficiency gains. In addition, the carbon market policy may channel both domestic and
foreign investment into low-carbon industries. Regions with favorable investment environments are
better positioned to attract these investments, enhancing their industrial competitiveness and driving
productivity improvements through innovation-led growth.

To explore the heterogeneous effects of the pilot carbon market policy on regional industrial low-
carbon transition, this study incorporates interaction terms between the DID policy indicator and key
regional characteristics into the baseline regression model. A significant interaction term coefficient
confirms the presence of heterogeneity. Table 5 reports the results of subgroup regressions. Group 1
includes the interaction between the pilot carbon market policy and per capita GDP. For carbon emission
intensity (/nco2ei) as the dependent variable, the interaction term is significantly negative, indicating
stronger emission reductions in more developed areas. For low-carbon total factor productivity (TFP) as
the dependent variable, the interaction term is significantly positive, showing greater productivity gains
in more developed areas. These findings suggest that carbon markets drive more effective low-carbon
industrial transformation in more developed areas.

Group 2 incorporates an interaction term between the DID policy indicator and technology market
turnover, a proxy for regional R&D capacity, into the regression. The results show that the interaction
term’s coefficients are statistically significant for both /nco2ei and TFP. This indicates that carbon
markets in regions with higher R&D capacity drive greater emission reductions and productivity gains.
These findings align with the theoretical mechanism outlined earlier, confirming that carbon trading
promotes low-carbon industrial transformation through technological progress. Group 3 incorporates
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the interaction between the DID policy indicator and regional openness, measured by foreign direct
investment (FDI), into the regression. When the dependent variable is carbon emission intensity (/nco2ei),
the interaction term is not statistically significant, but the DID coefficient is significantly negative,
indicating consistent emission reductions across regions regardless of investment environment. When
the dependent variable is low-carbon total factor productivity (TFP), the interaction term is significantly
positive, revealing heterogeneous productivity effects. Areas with stronger investment environments
attract greater investment in low-carbon technology R&D under carbon market policies. This increased
investment, combined with enhanced market competition from greater firm participation, boosts R&D
output and improves factor productivity.

Table 5: Regional Heterogeneity Analysis

. Group 1 Group 2 Group 3

Variable - ; ;

IncoZei tfp IncoZei tfp IncoZei tfp
DID 0.236 -0.185%* 0.210 -0.117* -0.184%#%* 0.041

(0.201) (0.092) (0.189) (0.063) (0.062) (0.024)
DIDxInped -0.285* 0.163%*

n,
peap (0.139) (0.060)
-0.074%* 0.034%**
DID xIntmt
(0.030) (0.012)
-0.095 0.076**
DIDXFDI
(0.067) (0.033)
-0.804 1.076 -1.119 1.224 -1.217 1.405
cons

- (3.267) (1.268) (3.346) (1.300) (3.419) (1.313)
Control variable YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Province fixed effects YES YES YES YES YES YES
N 480 480 480 480 480 480
adj. R’ 0.807 0.734 0.809 0.733 0.803 0.731

7.2.2 Industry heterogeneity

Under the dual context of rising environmental pressure and the establishment of the carbon
market system, industries exhibit distinct responses in behavior and decision-making. High-pollution
industries—which emit large volumes of greenhouse gases such as CO: and SO.—pose major
challenges to sustainable development. These sectors often face carbon allowance shortfalls and must
purchase additional quotas through the carbon market to maintain output levels. As a result, they are
more directly affected by carbon pricing policies, which may also stimulate technological innovation as
a response to regulatory and cost pressures. In contrast, mid- and low-pollution industries are subject to
less direct environmental pressure, as their production processes are less dependent on carbon emissions.
Consequently, their motivation for adopting low-carbon technologies or transforming production
practices may stem more from reputational considerations than regulatory necessity. These differences
suggest that the pilot carbon market policy may exert heterogencous effects across industries. To test
this, the industrial sector is classified into high-pollution and mid-low-pollution categories, and the
Regression results are reported in Table 6’

° Following the approach of Pan (2019), high-pollution industries include chemical manufacturing, chemical fibers, nonferrous and
ferrous metal smelting and mining, coal mining, power and heat supply, petroleum extraction and processing, leather and footwear, paper
manufacturing, textiles, non-metallic mineral products, and rubber and plastics. All other industrial sectors are grouped as mid-low pollution
industries.
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Table 6 reports the regression results based on the adjusted full sample®, as well as separate
regressions for high-pollution and mid-to-low-pollution industries. All regressions control for year,
province, and industry fixed effects, with control variables retained at the provincial level, and standard
errors clustered by province. The results indicate that the baseline effects of the pilot carbon market
on emission reduction and efficiency improvement in China’s industrial sector are robust. Subsample
analysis shows that the pilot carbon market policy significantly reduces carbon emission intensity in
high-pollution industries, but exhibits no statistically significant heterogeneous effects for mid-to-low-
pollution industries or for low-carbon total factor productivity across industry types. These findings
suggest that the emission reduction effect of the pilot carbon market is primarily concentrated in high-
pollution industrial sectors.

Table 6: Industry Heterogeneity Results

Variable Total samples High-pollution sectors Mid-and low-pollution Sectors
IncoZei tfp IncoZei tfp IncoZei tfp
DID -0.199%* 0.053* -0.2]3%** 0.048 -0.185 0.057
(0.098) (0.005) (0.068) (0.058) (0.175) (0.055)
-1.866 -2.819 -2.421 -5.597* 2.476 -0.058
—~eoms (6.033) (2.904) (5.186) (3.169) (9.516) (3.877)
Control variables YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES
Province fixed effects YES YES YES YES YES YES
Industry fixed Effects YES YES YES YES YES YES
N 840 480 420 240 420 240
adj. R’ 0.953 0.696 0.977 0.851 0.889 0.811

8. Research Conclusions and Policy Recommendations

Based on provincial panel data from 2006 to 2021, this study constructs a theoretical mechanism
model and employs a multi-period DID approach to comprehensively evaluate the environmental and
economic effects of China’s pilot carbon market policy. The main conclusions are as follows:

First, the pilot carbon market has significantly reduced carbon emission intensity in China’s
industrial sector while improving low-carbon total factor productivity. These results remain robust after
a series of tests, including the parallel trend test, placebo test, and multiple robustness checks.

Second, the carbon market mainly promotes industrial low-carbon transition by strengthening
cost constraints and facilitating industrial structure upgrading. These are the two primary transmission
channels. However, the policy has not yet demonstrated a significant effect on technological progress,
which is considered a core driver of long-term low-carbon industrial transformation.

Third, the impact of the carbon market exhibits regional heterogeneity. Specifically, regions with
higher levels of economic development and R&D capacity show more significant emission reduction
and efficiency improvement effects. In contrast, while foreign investment intensity does not result in
heterogeneous effects on emission reduction, it does significantly enhance productivity in regions with
stronger investment environments.

Under the context of the national “carbon peaking and neutrality” goals and increasing environmental
pressures, a well-developed carbon emissions trading market may serve as a new pathway for industrial
restructuring and transformation in China. It also constitutes a critical foundation for the establishment

° Full-sample data covers the period from 2008 to 2016.
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of a unified national carbon market across the entire industrial chain. Based on the above findings, this
study offers the following policy recommendations:

(1) Given the carbon market’s key role in driving industrial low-carbon transformation, China
should actively advance its carbon market development. By analyzing regional differences in industrial
growth and carbon emissions, the carbon market should include more pilot provinces or regions
and steadily expand its scope. Local governments and carbon trading institutions should organize
collaborative exchange activities to discuss and propose practical recommendations for carbon market
development. The government should increase financial allowances, recruit skilled professionals to
design robust mechanisms, and build a fair and efficient carbon trading system. These steps aim to
create clear pathways for achieving regional development and emission reduction goals while delivering
effective solutions to environmental challenges.

(2) Crafting sustainable development plans tailored to regional and industrial characteristics—
such as industrial features, development stages, economic conditions, and spatial layouts—is essential.
These plans should clearly define transformation pathways for traditional industrial regions to align
with national goals for industrial restructuring. This approach fosters a virtuous cycle of “industrial
transformation — environmental improvement — emergence of new industries — elimination of
outdated capacities — further industrial transformation”, ultimately driving sustainable development
across both industrial and other sectors.

(3) Supporting innovative enterprises through tax incentives, allowances, and similar measures
is key to stimulating investment in low-carbon technologies, talent development, and the resolution
of R&D challenges. At the same time, improving the investment climate will help attract funding
for low-carbon research and development projects. Together, these initiatives will enhance market
competitiveness, increase R&D output, and raise production efficiency, achieving a harmonious “win-win”
of emission reduction and economic gain.

(4) Empowering local regions to develop diverse carbon trading models allows for approaches that
reflect specific emission reduction needs. These models should emphasize the growth of carbon finance
products and services, while encouraging greater participation from regulated entities and market players
in emissions control and trading. By fully leveraging the synergy between efficient markets and state
capacity, we can accelerate the full harmonization of regional carbon markets with the national carbon
market framework.
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